PDE homework Qi Ma Rutgers University

2 Fundamental PDEs

1.[Ex.1] Write down an explicit formula for a function u solving the initial value

problem

{ut+b-Du+cu:0 in R" x (0, +00) 1)

u=g onR"x {t=0}

Here ¢ € R and b € R™ are constants.

Proof. Consider v(s) = u(bs + xg, s), then

d

d—v(s) = u(bs + g, 8) + b+ Du(bs + xg, s) = —cu(bs + xg, s) = —cv(s)
s

v(0) = g(xo)

It is an initial value problem of ODE, and we could solve out v:

L feon(s) =0 = o) = e “g(z0)
Thus, u(bt + o, t) = v(t) = e “g(xg) for Voo € R™, t € R. Let x = x¢ + bt, we get
u(w,t) = e “g(x — bt) (1.2)

]

2.[Ex.2] Prove that Laplace’s equation Au = 0 is rotation invariant; that is, if O

is an orthogonal n x n matrix and we define
v(z) =u(Ozx) (xeR"), (2.1)
then Av =0

Proof. Let O = (0;5)1<ij<n- Then O is orthogonal <= »",_, 0,405, = d;;. Where
0ij = 0if i # j, 0;; = 1 if © = 5. Exploit Chain’s rule:

ov(x) = 0;[u(Ox)] = Z oju - 0j;

Ofv(r) = 8i<i8ju(0x) . oji> = i it - (04;0k;)

k=1
Av = Zn: Ot = z”: O - (Zn: 0i0ki) = Au =0
i=1 k=1 i=1

]
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3.[Ex.3] Modify the proof of the mean-value formulas to show for n > 3 that

1 1
ul0) = ]éB@,r)g = ) /B(o,m(mw il G

provided

(3.2)

~Au=f in B°0,r)
u=g¢g on0B(0,r)

Proof. Define 9 (r u dS, then

J%B (0,7)

u(0) = lim ¢ (r / YP'(s) ds = ][ g dS — / Y (s) ds
r—0 aB(0,r)
Y (r) = ][ audS = 1—/ Au dx = 1—/ f(z) dx
oB(0,r) O rtna(n) Jpor rtna(n) Jpor
—/ V' (s) / / x)dx ds
0 na B(0,s)
_ 2—n
B n - 2 / / B(0,s) fdm o
- ( — / Fd + lim —— Fda+
n(n — 2)04(71) 2 B(0,r) 50§72 B(0,s)
"1 d
/o 32_"£(L(o,s) fdx>d8>
1 1 "1
= — dx +/ / dSds
n(n —2)a(n) ( T2 /B(o,r) d o "2 JoB,s) ! )
1 1 " 1
= — dr + / / ——f dSds
n(n —2)a(n) < 2 /B(o,r) d o JaB(o s) ’9‘7|n_2f )
1 1
= — dx —I—/ dx
n(n —2)a(n) < 2 /B(O,r) / By |7 ‘n Tzt >

1 1 1
~ T o T~ )

Hence,
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4.[Ex.4] Give a direct proof that if u € C?(U)NC(U) is harmonic within a bounded
open set U, then

maxu = maxu
U oUu

(Hint: Define u. :== u + ¢|z|? for € > 0, and show u. cannot attain its maximum

over U at an interior point.)

Proof. Let u. defined as above., Then
Au, = Au+ne >0

Assume u. attains its maximum at an interior point xo. Then Jyu.(zo) = 0,
0?u. () < 0. Hence, Au.(xg) < 0, which contradicts to Au. > 0. Thus, we have

maxu < maxu < maxu, = max u, < maxu -+ ¢ max |z|?
oUu U U ou oUu U

Let ¢ — 0, we get maxyy v < maxg u < maxgy u, which implies they are identical.

[
5.[Ex.5] We say v € C%(U) is subharmonic if
—Av<0 inU
(a) Prove for subharmonic v that
v(z) < ][ vdy forall B(z,r) CU (5.1)
B(z,r)

b) Prove that therefore maxy; v = maxgy v
( o

(c¢) Let ¢ : R — R be smooth and convex. Assume w is harmonic and v = ¢(u).

Prove v is subharmonic.

(d) Prove v := |Dul? is subharmonic, whenever u is harmonic.

Proof. For (a): define ¥(r) = Bar U @y Then by the same calculation of Ex4.

and proof of mean-value thm, we have

@D’(T):C’/B( )AvdyZO, 7%/0 s"tds =1

v(x) =limy(r) < 2/ s"1(s) ds = ][ v dy
r—0 ™ Jo B(z,r)
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For (b): Follows the same way as Ex.4
For (c): ¢ is convex, thus ¢"” >0

Av = ¢"(u)|Dul* + ¢'(u)Au > 0
For (d):

Av =2 Z (aij'LL)z + &u@-jju =2 Z (87;]"&)2 Z 0

1<4,5<n 1<i,j<n

O

6.[Ex.6] Let U be a bounded, open subset of R", Prove that there exists a constant
C, depending only on U, such that

max [u| < C(max |g| + max f)
U ou U

whenever u is a smooth solution of

{—Au:f in U

(6.1)
u=g¢g on OU.

(Hint: —A(u + %)\) <0, for A :=maxg f )

Proof. Let v = u + %A, then Av = Au+ A > 0, thus v is subharmonic. Apply

the maximum principle to v. Assume M = maxy |z|?, we get
M M M
max |u| < max |[v| + —\ = max |v| + — A < max |g| + —A (6.2)
U U 2n ouU 2n U n

Let C' = max{1, 2}, we conclude. O

7.[Ex.7] Use Poisson’s formula for the ball to prove

r+ |z|

u(0) < u(r) < TH_QWU(O) (7.1)

r— ||
(r + fa[)m

n—2

whenever u is positive and harmonic in B°(0,r). This is an explicit form of Har-

nack’s inequality.

Proof. Recall the Poisson’s formula for the ball:

u(z) = il i /8 99 st va e B0, r) (7.2)

na(n)r Jogon 12—yl
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where u = g > 0 on dB(0,r). By mean-value theorem, we have

uw>=‘£3m”g@>dsw> (7.3)

By Poisson’s formula (@)

a2
u(z) < r? — |z / S(y) = rn%Lﬂ_lu(o)
no(n)r(r — |z{)” aB(Or) (r—|z)
r? — |af? / o Tz
w(x) > =" (0
(z) 2 na(n)r(r + |z|)» aB(or S) (r 4 |z|)»1 (0)

8.[Ex.8] Prove Theorem 15 in §2.2.4. (Hint: SInce u = 1 solves (44) for g = 1, the

theory automatically implies

/63(0 Ky sy =1 (8.1)

for each z € B%(0,1))

Proof. For (i): by Poisson’s formula:

r? — lez/ 9()
u(r) = ——— dS(y) Vx e B%0,r
D= 6 Jomon Tr—wr 07
Since 1/|z—y|™ is C*° and faB(o " |D*(1/]z—y|™)| dS(y) < oo, by Fubini’s theorem,

we know u is C°.

For (ii): since u is C*°, we have

Y 1 r? — |z
A /8 o Ap(———-)g(y) dS(y)

na(n)r |z —y|™
By direct calculation we have

r? — \x|2) _ —2n dnz - (x—y) 2n(r? —|z|?)
[ —yl" -yt r oyt |z =y

Ay ~0

For (iii): since ¢ is continuous, suppose ¢ > 0, there exists 6 > 0, such that
lg(z) — g(y)| < & when ||z —y|| <. Then by (@), we have

u(x) — gz :ﬂ 9(y) — g(xo )dS
[u(@) = gl |émw) W)

no(n)r |z — y|"
r— |zf? l9(y) — g(x0)] 2sup |g|
STWWMQLmka roypr WY déxmfﬁﬁ_dﬂw

Page 5 of @



PDE homework Qi Ma Rutgers University

2|10B(0,7)] - sup ||
na(n)r

(r* = |=f*)

Thus when = — g, |x| — r. We have

lim |u(z) — g(xp)] <e for Ve >0

T—T0

9.[Ex.9] Let u be the solution of

{Au:O in R} ©.1)

u=g onJR}

given by Poisson’s formula for the half-space. Assume g is bounded and g(z) = |z|

for x € OR", |z| < 1. Show Du is not bounded near x = 0. (Hint: Estimate
u()\eng\fu(O) )

Proof. Recall Poisson’s formula for half-space:

u(:zc): 2z, /8 g(y) dy

na(n) Jory |z =yl

with g(y) = |y| € C(R"!), we have u € C*(R"). Thus

) _ ) ) _ 2 1
]fa"““e") = - <n> /a O™

2 B"1 1)
|8 O |/ dr—)oo as A — 0

Thus 0,u can not be bounded near z = 0. O

10.[Ex.10] (Reflection principle)
(a) Let Ut denote the open half-ball {x € R" | || < 1, z, > 0}. Assume
u € C2(UT) is harmonic in U*, with u = 0 on U N {z,, = 0}. Set

o(z) = 4 U@ W 20 (10.1)

—u(T1, ..., Tpo1,—Tp) ifx, <0

for z € U = B%(0,1). Prove v € C%(U) and thus v is harmonic within U.

(b) Now assume only that u € C*(UT)NC(UT). Show that v is harmonic within
U. (Hint: Use Poisson’s formula for the ball.)
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Proof. For (a), obviously v is C? in {z, > 0}, {z,, < 0} part, and v € C(U). As
for {z,, = 0} part:

ai ) n = 0

o(z) = u(a) ! i=1,...,n—1 (10.2)
—ju( n), Tn <0
8”7/ Y n Z 0

oo(z) = 4 Onl) ! (10.3)
Opu(z', —xy,), x, <0

Since u = 0 at {z, = 0}, u(z’,0) = 0. Thus ;v is continuous at {x, = 0} for
t=1,...,n — 1. The continuity of 9,v is trivial by () Hence, v is C*. Keep
going and notice that d;;u = 0 at {z,, = 0} for ¢,j # n. We could deduce that

D?v, except for 9*v, are continuous in U. Thanks to Au = 0, we have

Opu(r) = Y1) =0t Ty >0
—Pu(r!, —x,) = S0 0%, 1, <0

O?u are continuous in U, thus §2v is continuous. We deduce that v € C*(U). Then

v is harmonic by direct calculation:

Au(z) =0, T, >0
—Au(z’,—z,) =0 2, <0

Av =

For (b): recall the Poisson’s formula for a ball:

S P L /a W)

na(n) Jopoa lv =yl

We define g as

n > 0
Y (10.4)
L =Un)y, Yn <0
o+

g € C(0B(0,1)) because v € C(U*), u(y’,0) = 0. Let @ be solution given by

Poisson’s formula with boundary value g. Then @ = » on dB(0,1) N {y, > 0}.

a(a'.0) = 1 —|a/] (/8 9(y) aS(y) + /830{ . —9(y, yn)ds( ) =

na(n) BN{yn>0} |z — gy |z —y' |

Thus & = u on QU™, and they are both harmonic. By uniqueness of Laplace’s
equation for boundary value problems. We have & = u in U". And by anti-
symmetry of g with respect to x,, we know @(z2', —z,) = —u(2’, x,), which shows

2 = v. Then v is harmonic since @ is. ]
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11.[Ex.11] (Kelvin transform for Laplace’s equation) The Kelvin transform Ku = u

of a function v : R® — R is
7 = w()|3"? = %%) 2" (z #£0) (11.1)
a5

where = x/|x|?. Show that if w is harmonic, then so is .
(Hint: First show that D,%(D,z)" = |z|*I. Then mapping x — Z is conformal,

meaning angle preserving.)

Proof.
- dijlx]® — 2x;2;
PN . . 1
(Do) (Do) i = Y (03 - 0T %W
k=1
0ii2w; — 2x; 0ixilx|? — 223, (4 —2n)z;
AT — i A J 9. 271 (— J
%= 2 2ff af

Then mapping x — Z is conformal. Recall A(|z|>*™") = 0, then

Ad(z) = Au(@))]z>™" + 2V (u(z)) - V(|z|*™)
= 2> Oy Oz + Y O Azy)+

1,5,k i
22— )Y ud;; - a;)|x| "
1,
1 2—n A 4 —-n(__ Li
= WAu+zi:8iu<|a7| Az; +2(2 —n)|z|"( |x|2>>

=0
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12.[Ex.12] Suppose u is smooth and solves u; — Au = 0 in R" x (0, 00).

(a) Show uy(z,t) = u(Ax, \?t) also solves the heat equation for each A € R.

(b) Use (a) to show v(x,t) == x - Du(z,t) + 2tu,(z, t) solves the heat equation as

well.
Proof. For (a):
(0r — A)up(z,t) = N20u(Ar, \°t) — N2Au(Ax, \*t) =0
For (b): Notice
d
U(LE, t) = —U)\(x, t)

dX A=1

Since (A, z,t) — u(\, z,t) is smooth and solves the heat equation for every A, then

v solves the hear equation as well. O
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13.[Ex.13] Assume n = 1 and u(z,t) = v(%)

(a) Show

U = Ugy

if and only if

v+ %v' =0 (13.1)
Show that the general solution of () is
v(z) = c/ e/ ds 4+ d (13.2)
0

(b) Differentiate u(x,t) = U(%) with respect to x and select the constant ¢
properly, to obtain the fundamental solution ® for n = 1. Explain why this
procedure produces the fundamental solution. (Hint: What is the initial

condition for u?)

Proof. For (a), we have

Uy — Ugy = Op0(—=) — Ov

where z = x/+/t. Hence u solves wave equation if and only if v satisfies () To

solve v(z2):

d 2 2 ¥4
22 /4,1 2 A 2oy
dz(e V'(2)) = (0" + 211) 0

— &M (2)=c

= v(z):d+/ v'(s) ds:c/ et ds +d
0

0

d 1 T c T

—u(z,t) = %v'(— =

dz
Solves the heat equation. Let ¢ = 1/v/4m to normalize the solution. Then it
becomes the fundamental solution to heat equation. O
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14.[Ex.14] Write down an explicit formula for a solution of

uw—Au+cu=f inR" x (0,00)

(14.1)
u=g onR"™ x {t =0}

where ¢ € R

Proof. Consider the fundamental solution:

It is easy to verify that for ¢ > 0, ®. is smooth and solves the equation
0P, — AP. + P, =0

And ®. = e “®, where ® is the fundamental solution of heat equation. We claim

that u = ®, x g solves the equation

Ou— Au+cu =0 in R” x (0, +00)

(14.2)
u=g on R" x {t =0}
We only need to verify u is continuous on the boundary. Notice that

lim ®x*xg(x,t)=g(xg,0
o 9(x,t) = g(x0,0)

lim  w(z,t)= lim e %P xg(x,t) = g(z,0
(-T,t)—>(x070) ( ) (z,t)—>(x0,0) g( ) g( 0 )

As for the inhomogeneous equation, we apply the Duhamel’s Principle, to get

u(:c,t):/Ot@c(',t—s)*f(~,s) ds:/ot/nQ)c(x—y,t—s)f(y,s) dyds

which solves 0;u — Au+ cu = f with zero initial data. Combine them together we
get an explicit formula for ()

t
u(zx,t) :/ Q. (x—y,t)g(y) dy —|—/ / O (x—y,t —s)f(y,s) dyds (14.3)
n 0 n
with @, defined as () O
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15.[Ex.15] Given g : [0,00) — R, with g(0) = 0, derive the formula

2

e4@f5>g(s) ds (15.1)

u(z,t) =

x / t 1
Vi Jo (t—s)3/?
for a solution of the initial/boundary-value problem

U — Uy =0 in Ry x (0, 00)

u=0 on R, x {t =0}
u=yg on {x =0} x [0,00).

(Hint: Let v(x,t) = u(z,t) — g(t) and extend v to {z < 0} by odd reflection.)
Proof. Let v(x,t) be defined as the hint. Then v = 0 on {x = 0} x [0,00). And

v =0 on {t = 0} since g(0) = u(0,0) = 0. Extend v to ¢ in R x [0,00) by odd

reflection. Then v satisfies

Op — Ve = [ in R x (0,00) (15.2)
v1=0 on R x {t =0}
where f is given by
_g/<t)7 x>0
flz,t) =
Jg(t), x<0

We could solve for z,t > 0:

t 1 (z—1)?
o(x,t) = —————¢ -9 f(y,s) dyds
(@9) /O/R\/4’/T(t—5) (95)
g dyt [T ) dy)ds
y<0

- [ (L

_(a=y)?
) q'(s) dy)ds

[ =L

[0
=— [ g(s)|—= e y |ds
0 VT Jiyl<asovi=s)
t d/s 1 2
——glt)+ [ 95 (= eV dy ) ds
0 ds <ﬁ lyl<z/(2v/F—3) )

2

x ¢ 1 —z
= —g(t) + \/E/O (t — 8)3/264(t—s)g(3) ds

Thus, u(z,t) = 0(z,t) + g(t), we conclude. O
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16.[Ex.16] Given a direct proof that if U is bounded and u € C?(Ur) N C(Uy)

solves the heat equation, then

max ¢ = max u.
UT 1_‘T

(Hint: Define u. := u — et for £ > 0, and show u, cannot attain its maximum over

Ur at a point in Ur.)

Proof. Define u. as hint does. Then u. satisfies
8{&5 - AU&- =—e<0

If u. attain its maximum at (zg,%y) in Ur. Then we have du.(xo,ty) > 0,
Au(zg,tp) < 0. That’s contradiction to dyu. — Au. < 0 in Up. Thus

max U, = max U,
UT FT

Now we have

maxu < maxu. + €1 = maxu, + T < maxu + €T
UT UT FT T

Let ¢ — 0 we get maxp, u < maxp, u, the other side follows immediately by
I'r C UT ]

17.[Ex.17]) We say v € C3(Ur) is a subsolution of the heat equation if
v —Av <0 in Urp.

(a) Prove for a subsolution v that

1 |z —y/?
U($7 t) < —— // U(yv S) dyds
4rm E(x,t;r) (t - 8)2

for all E(x,t;r) C Ur.

(b) Prove that therefore maxg,, v = maxp,, v.

(c¢) Let ¢ : R — R be smooth and convex. Assume u solves the heat equation

and v = ¢(u). Prove that v is a subsolution.

(d) Prove v := |Du|? +u? is a subsolution, whenever u solves the heat equation.
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Proof. For (c):
vy — Av = ¢ (W)uy — @' (u)Au — ¢ (u)(Vu)? = —¢"(u)(Vu)? <0
For (d):

vy — Av = 2Du - D(uy — Au) + 20y (uy — Au) — 2| D*ul? — 2| Duy|?
= —2(|D*ul?* + [ Duy|*) < 0

O
18.[Ex.18] Assume u solves the initial value problem
Uy — Au=0 inR" x (O, +OO)
u=0, uy=h onR" x {t=0}
Show that v := wu; solves:
vy —Av =0 1in R" x (0,400
! ( ) (18.1)
v="h, vy=0 onR"x {t=0}

This is Stokes’ rule

Proof. In R™ x (0,400) we have:
Vgt — Av = att(ut) - A(Ut) = 8t(utt - AU/) =0
As for the boundary R x {t = 0}:

v(x,0) = u(z,0) = h(x)
ve(2,0) = ug(x,0) = Au(x,0) =0

whenever u € C?2(R" x {t > 0})

Thus v solves equation () O
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19.[Ex.19]

(a).

Proof.

(b).

Show the general solution of the PDE u,, = 0 is

u(z,y) = F(z) + G(y)

for arbitrary functions F' and G.

. Using the change of variable £ =z +t, n =z —t, show uy — u,, = 0 if and

only if ug, =0

. Use (a) and (b) to rederive d’Alembert’s formula.

. Under that condition on the initial data g, h is the solution of u a right-

moving wave? A left-moving wave?

(a). Consider PDE of d,(u,) = 0, we have
y
Uz (2, y) = ug(z,0) + / Oy (uy(z, 8))ds = uy(x,0)
0
We define f(z) = u,(z,0). Integral it we get u(x,y):
) =) + [ wals)ds =u0.0) + [ 1) (19.1)
0

Define F(xz) = [ f(s)ds, G(y) = u(0,y). Formula () becomes
u(z,y) = F(z) + G(y) (19.2)

Thus a necessary condition for u,, = 0 is u = F'(z) + G(y). Now we show
that it is sufficient:

Oy (F () + G(y)) =

Hence, the general solutions to u,, = 0 is u = F(x) + G(y) for arbitrary C"*
functions F, G.

Direct computation shows:

ox ot 1 1
e = Okl -+ ) = 50 — ) = 50, — 90)(Pku)

1 1
= Z(ﬁx — ag)(ax + 3t)u = ZUII — Uy = 0
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(c). By (a) and (b), if u is a solution to wy — uy, = 0, then u,e = 0 and
u(z,t) =F(&)+Gn) =Flx+t)+G(x—1t)
Boundary conditions show that F' and G must satisfy:
{ F(z) + G(x) = g(x)
F'(z) = G'(x) = h(z)

we have solutions given by

where C' is a constant. Thus u is given by
T+t

w(@,t) = F(z +1) + Gz — t) = 1(g<x+t)+g(x—t)+/

5 - h(s)ds)

(19.3)

which is d’Alembert’s formula.

(d). To make u left-moving, we only need to make G =0, i.e.

o(z) = /O " h(s)ds + C

For some constant C. It is equivalent to ¢ = h. Then u(z,t) = F(z +t) is
left-moving wave.

Such a condition is also necessary. If u is left-moving, that is

u(z,t) =u(zx+1¢,0) forVreR, t>0
— G(z,t)=Gx—t) forVzeR, t>0
< G =constant < ¢ =h

Thus u is a left-moving wave if and only if ¢’ = h.

By the same reason, u is right-moving if and only if ¢’ = —h.
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20.[Ex.21]

(a) Assume E = (E', E2, E3) and B = (B*, B%, B3?) solve Maxwell’s equations

E,=curl B, B;=—curl E
divB=divE=0

(20.1)

Show
Ett—AE:O, Btt—AB:O

(b) Assume that u = (u', u?, u?) solves the evolution equations of linear elasticity
uy — pAu — (A4 p)D(div u) =0 in R? x (0, 00).
Show w = divu and w = curl u each solve wave equations, but with

differing speeds of propagation.

Proof. For (a): Notice

Oy E? — O3 B2
curl curl E = curl | 3B — 9, E% | = —AE + V(div E)
O E* — O, F!

Thus
E;; = 0,(curl B) = curl B; = —curl curl E = AE

The same for B.
For (b):

wy = div uy = div <uAu + (A + p)D(div u))
= (A +2p)A(div u) = (A + 2p)Aw

Now notice that curl Vf = 0 for Vf € C%
wy = curl uy = curl <,uAu + (A + p)D(div u)) = uAw

Thus w, w satisfy wave equations with propagation speed of A + 2u and pu. O
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21.[Ex.22] Let u denote the density of particles moving to the right with speed one
along the real line and let v denote the density of particles moving to the left with
speed one. If at rate d > 0 right-moving particles randomly become leaft-moving,

and vice versa, we have the system of PDE

U + up = d(v —u)

vy — vy = d(u — v)
Show that both w := u and w := v solve the telegraph equation

Wy + 2dw; — Wyy = 0

Proof. Let’s suppose w = u without loss of generality. Then

Wy = Uyt = d(?}t - Ut) — Uiy

Wyy = Ugy = d(vx - ua:) — Uty
Then we have

Wyt — Wey = d(vy — v,) — d(up — uy)
=d*(u—v) +d*(v—u) — 2du,
= —Qdut = _det

By symmetry we have v also satisfies the telegraph equation. O

22.[Ex.23] Let S denote the square lying in R x (0, 00) with corners at the points
(0,1), (1,2), (0,3). (—1,2). Define

—1 for (z,t) e SN{t >z +2}
flx,t) =91 for (z,t) e SN{t <z +2}
0, otherwise.

Assume u solves
utt—um:f iHRX(0,00)

u=0, uy=0 onRx {t=0}

Describe the shape of u for times ¢ > 3.
(J.G Kingston, STAM Review 30 (1988), 645-649)
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§—t>b—x7 n ft>5+x'7
P {xete textsy
t "/,,’ @'"",u
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Figure 1: 22-1

By direct computation, Let A(xz,t) be the triangle domain of {(y,s) : 0 < s <
t, z—s<y<ux+s}

1 t x+s 1
U(:c,t)=§/ / [yt —s) dyds = §/A< )f(y,S) dyds
0 r—s x,t
1

=3 fdyds - 1ycs oy + 0 Lyss_aynpsstay 0 Lpcorny+

2 Jsna

1

5 | dyds - 1{x+1<t<x+3}
SNA

t—xz—1 1<t—ax<?2
=43—t+s 2<t—x<3

0 otherwise

See figure EI for the partition and A(z,t), and We could see u(z, t) is a right-moving

wave..
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23.[Ex.24] (Equipartition of energy) Let u solve the initial-value problem for the

wave equation in one dimension:

U — Uz =0 in R x (0, 00)

u=g, uy=h onR x {t =0}

Suppose g, h have compact support. The kinetic energy is k(t) = 5 f u?(z,t)
and the potential energy is p(t) = 5 f_oo u?(z,t) dx. Prove

(a) k(t) + p(t) is constant in ¢

(b) k(t) = p(t) for all large enough times ¢.

Proof. For (a): By d’Alembert’s formula, we have

al( ) = gz —t)+g(z+1) N 1 /x+t ) ds

2 2

Since g, h have compact support, Du, D?u have compact support and summable
for all . Hence, k(t), p(t) € C}.

d +oo +oo

[o.9] —00

oo
= / Uy Uy + UgpUg AT

o0

+o0 d
= / %(uxut) dr =0

—00

Thus, k(t) + p(t) is a constant in ¢.

For (b): Use D’Amlerbert’s formula, direct computation shows

400
k(t) —p(t) = /_ —g(x—t)g'(z+t)+ 1 (x—t)h (x+t) do

[e.e]

Since g, h are compactly supported, suppose ¢ = h = 0 in B(R)¢. When t > 2R,
one of ¢'(z—t) or ¢’(x+1t) must lie out of supp g, which means ¢'(x—t)g’ (x+t) = 0.
By the same reason, h(x — t)h(x +t) = 0, thus

k(t) = p(t) =0

That is, k(t) = p(t) for t > 2R.
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