6 Chapter 6 Second order Elliptic PDE

1. [Ex.1] Consider Laplace's Equation with potential function c:

$$-\Delta u + cu = 0 \tag{1.1}$$

and the divergence structure equation:

$$-\operatorname{div}(aDv) = 0 \tag{1.2}$$

where the function a is positive

- (a) Show that if u solves (1.1) and w > 0 solves (1.1), then $v \coloneqq u/w$ solves (1.2) for $a \coloneqq w^2$.
- (b) Conversely, show that if v solves (1.2), then $u \coloneqq va^{1/2}$ solves (1.1) for some potential c.

Proof. For (a): since u and w solves (1.1). w > 0

$$-\Delta u + cu = 0 \quad , \quad -\Delta w + cw = 0$$

Now $v = u/w \implies u = v \cdot w$. Thus, $-\Delta(vw) + c \cdot vw = 0$

For (b): if v solves (1.2),
$$u = v \cdot a^{1/2}$$

 $\Rightarrow -\operatorname{div}\left(aD\left(\frac{u}{a^{1/2}}\right)\right) = 0$
 $\iff -\operatorname{div}\left(a^{1/2}Du\right) + \operatorname{div}\left(\frac{u}{2a^{1/2}}Da\right) = 0$
 $\iff a^{1/2}\Delta u - \frac{1}{2a^{1/2}}\nabla a \cdot \nabla u + \frac{1}{2a^{1/2}}\nabla a \cdot \nabla u + \operatorname{div}\left(\frac{Da}{2a^{1/2}}\right)u = 0$
 $\iff -\Delta u + \frac{1}{a^{1/2}}\operatorname{div}\left(\frac{Da}{2a^{1/2}}\right)u = 0$

_	-	-	-	

2.[Ex.2] Let

$$Lu = -\sum_{i,j=1}^{n} (a^{ij}u_{x_i})_{x_j} + cu$$
(2.1)

Prove that there exists a constant $\mu > 0$ such that the corresponding bilinear form $B[\cdot, \cdot]$ satisfies the hypotheses of the Lax-Milgram Theorem, provided

$$c(x) \ge -\mu \quad (x \in U).$$

Proof. Define $B[\cdot, \cdot]: H^1_0(U) \times H^1_0(U) \to \mathbb{R}$ as

$$B[u, v] = \int_{U} \sum_{i,j=1}^{n} a^{ij} u_{x_i} v_{x_j} + cuv$$

It is easy to see $B[\cdot, \cdot]$ is a bilinear form on U. Since L is elliptic,

$$B[u,v] = \int_{U} \sum a^{ij} u_{x_i} v_{x_j} + cuv$$

$$\leq \Lambda \|Du\|_{L^2} \cdot \|Dv\|_{L^2} + \|c\|_{\infty} \|u\|_{L^2} \|v\|_{L^2}$$

$$\leq (\|c\|_{\infty} + \Lambda) \|u\|_{H^1} \|v\|_{H^1}$$

Thus, $B[\cdot, \cdot]$ is continuous. Moreover, assume $c(x) \ge -\mu$. By Poincaré's inequality, there exists C > 0 such that

$$||u||_{H^1}^2 \le C ||Du||_{L^2}^2$$

Hence, we have

$$B[u, u] \ge \lambda \|Du\|_{L^2}^2 + \int_U cu^2$$
$$\ge \lambda \|Du\|_{L^2}^2 - \mu \|u\|_{L^2}^2$$
$$\ge \left(\frac{\lambda}{C} - \mu\right) \|u\|_{H^1}^2$$

Let $0 < \mu < \frac{\lambda}{C}$, when $c(x) > \mu$,

$$B[u,u] \gtrsim \|u\|_{H^2}^2$$

This shows the coercivity of $B[\cdot, \cdot]$

3.[Ex.3] A function $u \in H^2_0(U)$ is a weak solution of this boundary-value problem for the *biharmonic equation*

$$\begin{cases} -\Delta^2 u = f & \text{in } U\\ u = \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial U \end{cases}$$
(3.1)

provided

$$\int_{U} \Delta u \Delta v \, dx = \int_{U} f v \, dx \tag{3.2}$$

for all $v \in H_0^2(U)$. Given $f \in L^2(U)$, prove that there exists a unique weak solution of (3.1).

Proof. Existence: Define $B[\cdot, \cdot] : H^2_0(U) \times H^2_0(U) \to \mathbb{R}$ as

$$B[u,v] = \int_U \Delta u \cdot \Delta v \, dx$$

Obviously $B[\cdot, \cdot]$ is linear, continuous. By Poincaré's inequality, applying some integration by parts, we also have coercivity:

$$B(u,u) = \int_{U} (\Delta u)^{2} dx = \sum_{i,j=1}^{n} \int_{U} u_{x_{i}x_{i}} u_{x_{j}x_{j}} dx$$
$$= \sum_{i,j=1}^{n} \int_{U} u_{x_{i}x_{j}} u_{x_{i}x_{j}} dx = \int_{U} |D^{2}u|^{2} dx$$
$$\ge C ||u||_{H_{0}^{2}}^{2}$$

Thus, the Lax–Milgram Theorem shows that for given $f \in L^2(U)$, there exists a solution $u \in H^2_0(U)$ to (3.1).

Uniqueness: Let u_1, u_2 both be solutions to (3.1). Define $u = u_1 - u_2$, then u is a weak solution to

$$\begin{cases} -\Delta^2 u = 0 & \text{in } U\\ u = \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial U \end{cases}$$

And

$$||u||_{H_0^2}^2 \lesssim ||D^2 u||_{L^2}^2 = \int_U (\Delta u)^2 \, dx = \int_U 0 \cdot u \, dx = 0$$

 $\implies u \equiv 0$

4.[Ex.4] Assume U is connected. A function $u \in H^1(U)$ is a weak solution of Neumann's problem

$$\begin{cases} -\Delta u = f & \text{in } U\\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial U \end{cases}$$
(4.1)

if

$$\int_{U} Du \cdot Dv \, dx = \int_{U} fv \, dx \tag{4.2}$$

for all $v \in H^1(U)$. Suppose $f \in L^2(U)$. Prove (4.1) has a weak solution if and only if

$$\int_{U} f \, dx = 0 \tag{4.3}$$

Proof. On the one hand, if u is a weak solution, let v = 1 in U. Then (4.2) gives

$$\int_{U} f \, dx = \int_{U} Du \cdot 0 \, dx = 0.$$

On the other hand, if $\int_U f \, dx = 0$, let $M := \{f \in L^2 : \int_U f \, dx = 0\}$, $M^1 := M \cap H^1$. Define $B[\cdot, \cdot] : M^1 \times M^1 \to \mathbb{R}$ as

$$B[u,v] = \int_U Du \cdot Dv \, dx$$

It is easy to verify B[u, v] is bilinear and continuous. By Poincaré's inequality, in M^1 , we have

$$\int_U u^2 \, dx \le C \int_U |Du|^2 \, dx.$$

Thus, $B[\cdot, \cdot]$ satisfies the hypotheses of the Lax–Milgram *Theorem.

$$\Rightarrow \exists u \in M^1 \text{ such that for all } v \in M^1, \quad \int_U Du \cdot Dv \, dx = \int_U fv \, dx.$$

To make u a weak solution, we need to take $v \in H^1$, not M^1 . Let $v \in H^1$. Then $v - \int_U v \, dx \in M^1$.

$$\Rightarrow \int_{U} Du \cdot Dv \, dx = \int_{U} Du \cdot D\left(v - \int_{U} v \, dx\right) \, dx$$
$$= \int_{U} f\left(v - \int_{U} v\right) \, dx$$
$$= \int_{U} fv - \int_{U} v \cdot \int_{U} f = \int_{U} fv.$$

Thus, u is the weak solution.

5.[Ex.5] Explain how to define $u \in H^1(U)$ to be a weak solution of Poisson's equation with *Robin boundary conditions*:

$$\begin{cases} -\Delta u = f & \text{in } U\\ u + \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial U \end{cases}$$
(5.1)

Discuss the existence and uniqueness of a weak solution for a given $f \in L^2(U)$.

Proof. Apply integration by parts,

$$\int_{U} f v \, dx = \int_{U} -\Delta u \cdot v \, dx = \int_{U} \nabla u \cdot \nabla v \, dx - \int_{\partial U} \frac{\partial u}{\partial \nu} v \, dx$$
$$= \int_{U} \nabla u \cdot \nabla v \, dx + \int_{\partial U} u \cdot v \, dx.$$

Then it is reasonable to define $u \in H^1(U)$ as a weak solution if

$$\int_{U} \nabla u \cdot \nabla v \, dx + \int_{\partial U} u \cdot v \, dx = \int_{U} f \cdot v \, dx \quad \text{for all } v \in H^{1}(U).$$

Define

$$B[u,v] = \int_U \nabla u \cdot \nabla v \, dx + \int_{\partial U} u \cdot v \, dx.$$

Then $B[\cdot,\cdot]$ is bilinear and bounded, since we have the trace inequality

$$\int_{\partial U} |u|^2 \, ds \le C \|u\|_{H^1}^2.$$

And Poincaré's inequality,

$$\int_{U} |u|^{2} dx \leq C \left(\int_{U} |\nabla u|^{2} dx + \int_{\partial U} |u|^{2} ds \right)$$

shows the coercivity of $B[\cdot, \cdot]$. Thus, we can apply the Lax–Milgram Theorem to deduce the existence of a weak solution.

For uniqueness, assume u_1 and u_2 are two weak solutions. Let $u = u_1 - u_2$. Then,

$$\int_U |\nabla u|^2 \, dx + \int_{\partial U} |u|^2 \, ds = \int_U 0 \cdot u \, dx = 0.$$

Thus, $\nabla u \equiv 0$, $u|_{\partial U} \equiv 0 \implies u = 0$.

6.[Ex.6] Suppose U is connected and ∂U consists of two disjoint, closed sets Γ_1 and Γ_2 . Define what if means for u to be a weak solution of Poisson's equation with *mixed Dirichlet-Neumann Boundary Conditions*:

$$\begin{cases} -\Delta u = f & \text{in } U \\ u = 0 & \text{on } \Gamma_1 \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \Gamma_2 \end{cases}$$
(6.1)

Discuss the existence and uniqueness of weak solutions.

Proof. Define

$$H(U) = \{ u \in H^1(U) : u = 0 \text{ on } \Gamma_1 \},\$$

it is easy to see H(U) is still a Hilbert space.

A weak solution to (6.1) is defined as $u \in H(U)$ such that

$$\int_{U} fv \, dx = \int_{U} \nabla u \cdot \nabla v \, dx \quad \text{for all } v \in H(U).$$

By the standard Lax–Milgram Theorem, notice

$$B[u,v] := \int_U \nabla u \cdot \nabla v \, dx$$

is bilinear, continuous, and coercive. Since Poincaré's inequality works in H, we deduce the existence.

For uniqueness, it is also standard as we did in [Ex.5].

7.[Ex.7] Let $u \in H^1(\mathbb{R}^n)$ have compact support and be a weak solution of the semilinear PDE

$$-\Delta u + c(u) = f \quad \text{in } \mathbb{R}^n, \tag{7.1}$$

where $f \in L^2(\mathbb{R}^n)$ and $c : \mathbb{R} \to \mathbb{R}$ is smooth, with c(0) = 0 and $c' \ge 0$. Prove $u \in H^2(\mathbb{R}^n)$.

(Hint: Mimic the proof of Theorem 1 in §6.3.1, but without the cutoff function ζ .)

Proof. Since u is a weak solution, we have

$$\int_U \nabla u \cdot \nabla v + c(u) \cdot v \, dx = \int_U f \cdot v \quad \text{for all } v \in H^1(\mathbb{R}^n).$$

Take $v = D_{-h}(D_h u) \in H^1(\mathbb{R}^n).$

$$\Rightarrow \int |\nabla(D_h u)|^2 + D_h(c(u)) \cdot D_h u = \int f \cdot D_{-h} D_h u \, dx.$$

Now since $c' \ge 0 \Rightarrow c$ is increasing, $D_h(c(u)) \cdot D_h u \ge 0$.

$$\Rightarrow \int |\nabla(D_h u)|^2 \leq \int f \cdot D_{-h} D_h u \, dx$$
$$\leq \|f\|_{L^2} \cdot \|D_{-h} D_h u\|_{L^2}$$
$$\leq \|f\|_{L^2} \cdot \|\nabla D_h u\|_{L^2}$$

Thus we have

$$||D_h(\nabla u)||_{L^2} = ||\nabla(D_h u)||_{L^2} \le ||f||_{L^2}$$
 for all $h \in \mathbb{R}^n$.

Let $h \to 0$. This implies $\nabla u \in H^1(\mathbb{R}^n)$, i.e., $u \in H^2(\mathbb{R}^n)$, with $\|\nabla^2 u\|_{L^2} \le \|f\|_{L^2}$.

8.[Ex.8] Let u be a smooth solution of the uniformly elliptic equation $Lu = -\sum_{i,j=1}^{n} a^{ij}(x)u_{x_ix_j} = 0$ in U. Assume that the coefficients have bounded derivatives.

Set $v \coloneqq |Du|^2 + \lambda u^2$ and show that

$$Lv \le 0 \quad \text{in}U$$
 (8.1)

if λ is large enough. Deduce

$$|Du||_{L^{\infty}(U)} \le C \Big(||Du||_{L^{\infty}(\partial U)} + ||u||_{L^{\infty}(\partial U)} \Big)$$
(8.2)

Proof. Firstly, since

$$-\sum_{i,j}a^{ij}u_{x_ix_j}=0,$$

differentiate both sides, we have

$$-\sum_{i,j} D(a^{ij})u_{x_ix_j} = \sum_{i,j} a^{ij} (Du)_{x_ix_j}.$$

Now assume $|Da^{ij}| \leq M$. And a^{ij} is uniformly elliptic:

$$\sum_{i,j} a^{ij} \xi_i \xi_j \ge \Lambda |\xi|^2.$$

Since $v = |Du|^2 + \lambda u^2$, we have

$$Lv = -\sum_{i,j=1}^{n} a^{ij}(x) \cdot 2\left((Du)_{x_i}(Du)_{x_j} + (Du)_{x_ix_j} \cdot Du + \lambda u_{x_i}u_{x_j} + \lambda uu_{x_ix_j}\right)$$
$$= -2\sum_{i,j=1}^{n} a^{ij}(x)\left((Du)_{x_i}(Du)_{x_j} + \lambda u_{x_i}u_{x_j}\right) + 2\sum_{i,j} D(a^{ij}(x))u_{x_ix_j} \cdot Du$$
$$\leq -2\Lambda |D^2u|^2 - 2\lambda\Lambda |Du|^2 + \frac{M}{\Lambda} |Du|^2 + \Lambda |D^2u|^2$$
$$\leq -\Lambda |D^2u|^2 - \left(2\lambda\Lambda - \frac{M}{\Lambda}\right) |Du|^2 \leq 0 \quad \text{when } \lambda \geq \frac{M}{2\Lambda^2}.$$

Now $Lv \leq 0$, by the maximum principle: $\sup_U |v| \leq \sup_{\partial U} |v|$

$$\Rightarrow \|Du\|_{L^{\infty}}^{2} \leq \sup_{U} |v| \leq \sup_{\partial U} |Du|^{2} + \lambda \sup_{\partial U} |u|^{2}$$

		1

9.[Ex.9] Assume u is a smooth solution of $Lu = -\sum_{i,j=1}^{n} a^{ij} u_{x_i x_j} = f$ in U, u = 0 on ∂U , where f is bounded. Fix $x^0 \in \partial U$. A *barrier* at x^0 is a C^2 function w such that

$$Lw \ge 1 \text{ in } U, \quad w(x^0) = 0, \quad w \ge 0 \text{ on } \partial U.$$
 (9.1)

Show that if w is a barrier at x^0 , there exists a constant C such that

$$|Du(x^0)| \le C \left| \frac{\partial w}{\partial \nu}(x^0) \right|$$

Proof. Assume

$$\sup_{U} f_+ = M$$

Then

$$L(u - Mw) = f - M \le 0,$$

By the Maximum Principle, $u - Mw \le 0$ in U. Since u = 0 on ∂U ,

$$|Du(x_0)| = \frac{\partial u}{\partial \nu}(x_0).$$

And,

$$u - Mw(x_0) = 0 = \sup_{U} (u - Mw).$$

By Hopf's lemma,

$$\frac{\partial}{\partial \nu}(u - Mw) \le 0 \implies \frac{\partial u}{\partial \nu} \le M \cdot \frac{\partial w}{\partial \nu}.$$

г			
		_	

10. [Ex.10] Assume U is connected. Use (a) energy methods and (b) the maximum principle to show that the only smooth solutions of the Neumann boundary-value problem

$$\begin{cases} -\Delta u = 0 & \text{in } U\\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial U \end{cases}$$

are $u \equiv C$, for some constant C.

Proof. (a) Energy methods.

$$0 = \int_{U} (-\Delta u) \cdot u = \int_{U} |\nabla u|^{2} + \int_{\partial U} \frac{\partial u}{\partial \nu} \cdot u = \int_{U} |\nabla u|^{2}$$

Thus, $\nabla u \equiv 0$ a.e., which implies $u \equiv C$ for some constant C.

(b) Maximum Principle.

 $-\Delta u \leq 0 \quad \Rightarrow \quad u \text{ satisfies the maximum principle.}$

Suppose u is not constant, and $u(x_0) = \max_{\partial U} |u|$ with $x_0 \in \partial U$. Then by Hopf's lemma,

$$\frac{\partial u}{\partial \nu}(x_0) > 0$$

That's a contradiction to

$$\left. \frac{\partial u}{\partial \nu} \right|_{\partial U} = 0$$

Thus, $u \equiv C$ is a constant function.

11.[Ex.11] Assume $u \in H^1(U)$ is a bounded weak solution of

$$-\sum_{i,j=1}^{n} (a^{ij}u_{x_i})_{x_j} = 0 \quad \text{in } U.$$

Let $\phi : \mathbb{R} \to \mathbb{R}$ be convex and smooth, and set $w = \phi(u)$. Show w is a weak subsolution; that is, $B[w, v] \leq 0$ for all $v \in H_0^1(U), v \geq 0$.

Proof. Take $v \in C_c^{\infty}(U)$,

$$B[w,v] = \int \sum_{i,j=1}^{n} a^{ij} (\phi(u))_{x_i} v_{x_j} dx$$

= $\int \sum_{i,j=1}^{n} a^{ij} \phi'(u) u_{x_i} v_{x_j} dx$
= $\int \sum_{i,j=1}^{n} a^{ij} u_{x_i} (\phi'(u)v)_{x_j} dx - \int \sum_{i,j=1}^{n} a^{ij} u_{x_i} u_{x_j} \phi''(u)v dx$
 $\leq \int \sum_{i,j=1}^{n} a^{ij} u_{x_i} (\phi(u)v)_{x_j} dx = 0$

Since $C_c^{\infty}(U)$ is dense in $H_0^1(U)$, and $B[\cdot, \cdot]$ is continuous, the inequality holds for all $v \in H_0^1$. Thus, w is a weak subsolution.

12.[Ex.12] We say that the uniformly elliptic operator

$$Lu = -\sum_{i,j=1}^{n} a^{ij} u_{x_i x_j} + \sum_{i=1}^{n} b^i u_{x_i} + cu$$

satisfies the weak maximum principle if for all $u \in C^2(U) \cap C(\overline{U})$

$$\begin{cases} Lu \le 0 & \text{in } U\\ u \le 0 & \text{on } \partial U \end{cases}$$

implies that $u \leq 0$ in U.

Suppose that there exists a function $v \in C^2(U) \cap C(\overline{U})$ such that $Lv \ge 0$ in U and v > 0 on \overline{U} . Show that L satisfies the weak maximum principle.

(Hint: Find an elliptic operator M with no zeroth-order term such that w := u/v satisfies $Mw \leq 0$ in the region $\{u > 0\}$. To do this, first compute $(v^2w_{x_i})_{x_j}$.)

Proof. Let $w := \frac{u}{v}$. Then w > 0 on $\{u > 0\}$, and w = 0 on ∂U .

$$L(w \cdot v) = Lu \le 0$$

$$\implies -\sum_{i,j} a^{ij} w_{x_i x_j} \cdot v - 2 \sum_{i,j} a^{ij} w_{x_i} v_{x_j} + Lv \cdot w + \sum_{i=1}^n b^i w_{x_i} \cdot v \le 0$$
$$\implies -\sum_{i,j} a^{ij} w_{x_i x_j} + \sum_{i=1}^n \left(b^i - \sum_{j=1}^n 2a^{ij} \frac{v_{x_j}}{v} \right) w_{x_i} \le -\frac{Lv}{v} \cdot w \le 0 \quad \text{in } \{u > 0\}$$

Define

$$Mw := -\sum_{i,j=1}^{n} a^{ij} w_{x_i x_j} + \sum_{i=1}^{n} \left(b^i - \sum_{j=1}^{n} 2a^{ij} \frac{v_{x_j}}{v} \right) w_{x_i}.$$

Then M has no zero-th order term. By the maximum principle,

$$\sup_{U} w \le \sup_{\partial U} w^{+} = 0 \implies w \le 0 \text{ in } U \implies u \le 0 \text{ in } U.$$

$$\lambda_k = \max_{S \in \Sigma_{k-1}} \min_{\substack{u \in S^{\perp} \\ \|u\|_{L^2} = 1}} B[u, u] \quad (k = 1, 2, \dots).$$

Here Σ_{k-1} denotes the collection of (k-1)-dimensional subspaces of $H_0^1(U)$.

Proof. Let $\{w_n\}_{n=1}^{\infty}$ be the eigenfunctions with respect to $\{\lambda_k\}_{k=1}^{\infty}$, and $||w_n||_{L^2} = 1$. Then $\{w_n\}_{n=1}^{\infty}$ forms an orthonormal basis in $L^2(U)$. Let $S_0 := \operatorname{span}\{w_1, \ldots, w_{k-1}\}$ which has dimension k-1, and $w_k \in S_0^{\perp}$.

$$B[w_k, w_k] = (Lw_k, w_k) = \lambda_k$$

And for $u \in S_0^{\perp}$, let

$$u = \sum_{n=0}^{\infty} d_{k+n} w_{k+n}$$
, with $\sum_{n=0}^{\infty} d_{k+n}^2 = 1$.

Then, we calculate

$$B[u,u] = \sum_{n=0}^{\infty} d_{k+n}^2 \lambda_{k+n} \ge \lambda_k \sum_{n=0}^{\infty} d_{k+n}^2 = \lambda_k.$$

Thus,

$$\min_{u \in S_0^{\perp}} B[u, u] = \lambda_k \le \max_{S \in \Sigma_{k-1}} \min_{u \in S^{\perp}} B[u, u].$$
(13.1)

On the other hand, let $S_1 := \operatorname{span}\{w_1, \ldots, w_k\}$ which has dimension k. Thus, for all $S \in \Sigma_k$, we could find $u \in S^{\perp} \cap S_1$. Let $u = \sum_{n=1}^k d_n w_n$, then

$$B[u, u] = \sum_{n=1}^{k} d_n^2 \lambda_n \le \lambda_k \quad \Rightarrow \quad \min_{S^{\perp}} B[u, u] \le \lambda_k.$$

Thus,

$$\max_{S \in \Sigma_{k-1}} \min_{u \in S^{\perp}} B[u, u] \le \lambda_k.$$
(13.2)

Combine (13.1) and (13.2), we conclude with

$$\lambda_k = \max_{S \in \Sigma_{k-1}} \min_{u \in S^\perp} B[u, u]$$

14. [Ex.14] Let λ_1 be the principal eigenvalue of the uniformly elliptic, nonsymmetric operator

$$Lu = -\sum_{i,j=1}^{n} a^{ij} u_{x_i x_j} + \sum_{i=1}^{n} b^i u_{x_i} + cu,$$

taken with zero boundary conditions. Prove the "max-min" representation formula:

$$\lambda_1 = \sup_u \inf_{x \in U} \frac{Lu(x)}{u(x)},$$

the "sup" taken over functions $u \in C^{\infty}(\overline{U})$ with u > 0 in U, u = 0 on ∂U , and the "inf" taken over points $x \in U$.

(Hint: Consider the eigenfunction w_1^* corresponding to λ_1 for the adjoint operator L^* .)

Proof. Let w_1 be the eigenfunction of L corresponding to λ_1 . Then $w_1 > 0$ and smooth. Thus,

$$\inf_{x \in U} \frac{Lw_1(x)}{w_1(x)} = \lambda_1.$$

$$\implies \lambda_1 \leq \sup_{\substack{u \in C_c^{\infty}(U) \\ u > 0}} \inf_{x \in U} \frac{Lu(x)}{u(x)}$$
(14.1)

On the other hand, consider w_1^* for the adjoint operator L^* . Then

$$\int_U \frac{Lu(x)}{u(x)} u(x) w_1^*(x) dx = \int_U Lu \cdot w_1^* dx = \int_U u \cdot L^* w_1^* dx$$
$$= \lambda_1 \int_U u(x) w_1^*(x) dx$$

$$\implies \int_{U} \left(\frac{Lu(x)}{u(x)} - \lambda_1 \right) u(x) w_1^*(x) \, dx = 0$$

Since $u(x)w_1^*(x) > 0$, we deduce

$$\inf_{x \in U} \left(\frac{Lu(x)}{u(x)} - \lambda_1 \right) \le 0 \quad \text{for all } u > 0, \ u \in C^{\infty}(U)$$

$$\implies \sup_{u} \inf_{x \in U} \frac{Lu(x)}{u(x)} \le \lambda_1 \tag{14.2}$$

Combine (14.1) and (14.2), we conclude.

Page 14 of 17

15.[Ex.15] (Eigenvalues and domain variations) Consider a family of smooth, bounded domains $U(\tau) \subset \mathbb{R}^n$ that depend smoothly upon the parameter $\tau \in \mathbb{R}$. As τ changes, each point on $\partial U(\tau)$ moves with velocity **v**.

For each τ , we consider eigenvalues $\lambda = \lambda(\tau)$ and corresponding eigenfunctions $w = w(x, \tau)$:

$$\begin{cases} -\Delta w = \lambda w & \text{in } U(\tau) \\ w = 0 & \text{on } \partial U(\tau), \end{cases}$$

normalized so that $||w||_{L^2(U(\tau))} = 1$. Suppose that λ and w are smooth functions of τ and x. Prove Hadamard's variational formula

$$\dot{\lambda} = -\int_{\partial U(\tau)} \left|\frac{\partial w}{\partial \nu}\right|^2 \mathbf{v} \cdot \nu \, dS,$$

where $\dot{\lambda} = \frac{d}{d\tau} \lambda$ and $\mathbf{v} \cdot \nu$ is the normal velocity of $\partial U(\tau)$. (Hint: Use the calculus formula from §C.4.)

Proof. Since $w(x, \tau)$ is a weak solution, we have

$$\lambda = \int_U \lambda w \cdot w \, dx = \int_U |\nabla w|^2 \, dx.$$

Differentiate with respect to τ , noticing $|\nabla w||_{\partial U} = \left|\frac{\partial w}{\partial \nu}\right|$, and using calculus formulas in §C.4, we get

$$\dot{\lambda} = \int_{\partial U} |\nabla w|^2 \,\mathbf{v} \cdot \nu \, ds + \int_U \frac{d}{d\tau} |\nabla w|^2 \, dx$$
$$= \int_{\partial U} \left(\frac{\partial w}{\partial \nu}\right)^2 \,\mathbf{v} \cdot \nu \, ds + \int_U \nabla w \cdot \nabla \dot{w} \, dx$$

And since $||w||_{L^2} \equiv 1$, we have

$$\int_{U} \nabla w \cdot \nabla \dot{w} = \int_{U} \lambda w \cdot \dot{w} = \lambda \cdot \frac{1}{2} \cdot \frac{d}{d\tau} \|w\|_{L^{2}}^{2} = 0.$$

Thus,

$$\dot{\lambda} = \int_{\partial U} \left(\frac{\partial w}{\partial \nu}\right)^2 \mathbf{v} \cdot \nu \, ds$$

16.[Ex.16] (Radiation condition) If we separate variables to look for a complexvalued solution of the wave equation having the form $u = e^{-i\sigma t}w$ for w = w(x)and $\sigma \in \mathbb{R}, \sigma \neq 0$, we are led to the eigenvalue problem

(*)
$$-\Delta w = \lambda w$$
 in \mathbb{R}^n

where $\lambda := \sigma^2$.

- (a) Show that $w = e^{i\sigma\omega \cdot x}$ solves (*), provided $|\omega| = 1$. Then $u = e^{i\sigma(\omega \cdot x t)}$ is a traveling wave function of the wave equation.
- (b) Show that for n = 3, the function $\Phi := \frac{e^{i\sigma|x|}}{4\pi|x|}$ solves

$$-\Delta \Phi = \lambda \Phi + \delta_0 \quad \text{in } \mathbb{R}^3.$$

(c) The Sommerfeld radiation condition requires for a solution of (*) that

$$\lim_{r \to \infty} r(w_r - i\sigma w) = 0,$$

for $w_r := Dw \cdot \frac{x}{|x|}$. Prove that the solution w from (a) does not satisfy this condition but that Φ from (b) does.

Proof. (a). Direct computation: $-\Delta w = -|i\sigma\omega|^2 e^{i\sigma\omega\cdot x} = \sigma^2 e^{i\sigma\omega\cdot x} = \lambda w$. Then $u = e^{-i\sigma t}w = e^{i\sigma(\omega\cdot x-t)}$ solves the wave equation. (b). We compute $\Delta\Phi$:

$$-\Delta \Phi = e^{i\sigma|x|} \cdot -\Delta \left(\frac{1}{4\pi|x|}\right) - \Delta \left(e^{i\sigma|x|}\right) \cdot \frac{1}{4\pi|x|} - 2\nabla \left(e^{i\sigma|x|}\right) \cdot \nabla \left(\frac{1}{4\pi|x|}\right)$$
$$= \delta_0 + \sigma^2 e^{i\sigma|x|} \cdot \frac{1}{4\pi|x|} - \frac{2i\sigma e^{i\sigma|x|}}{4\pi|x|^2} + \frac{2i\sigma e^{i\sigma|x|}}{4\pi|x|^4} x \cdot x$$
$$= \delta_0 + \lambda \Phi.$$

(c). Since we have $w_r - i\sigma w = (i\sigma\omega \cdot \frac{x}{|x|} - i\sigma)e^{i\sigma\omega \cdot x}$. If we choose $\omega, \frac{x}{|x|}$ such that $\omega \cdot \frac{x}{|x|} = 0$, then w = 1. $r(w_r - i\sigma w) = -i\sigma r$ does not converge to 0.

$$\left|\Phi_r - \mathrm{i}\sigma\Phi\right| = \left|\frac{e^{\mathrm{i}\sigma|x|}}{4\pi|x|^2}\right| \le \frac{1}{4\pi r^2} \implies \lim_{r \to \infty} r \left|\Phi_r - \mathrm{i}\sigma\Phi\right| = 0.$$

17.[Ex.17] (Continuation) Prove that if w is a complex-valued solution of eigenvalue problem (*) in \mathbb{R}^3 and if w satisfies the radiation condition, then $w \equiv 0$. (Hints: First observe that

$$0 = \int_{B(0,R)} (\overline{w}\Delta w - w\Delta\overline{w}) \, dx = \int_{\partial B(0,R)} (\overline{w}w_r - w\overline{w}_r) \, dS.$$

Use this and the radiation condition to show

$$\int_{\partial B(0,R)} |w_r|^2 + \sigma^2 |w|^2 \, dS = \int_{\partial B(0,R)} |w_r - i\sigma w|^2 \, dS \to 0$$

as $R \to \infty$. Given now a point $x_0 \in \mathbb{R}^3$, select $R > |x_0|$. Then

$$w(x_0) = \int_{\partial B(0,R)} (\Phi w_r - w \Phi_r) \, dS,$$

where $\Phi = \Phi(x - x_0)$. Show the integral goes to zero as $R \to \infty$.)

Proof. Follow the hints, firstly we observe

$$0 = \int_{B(0,R)} (\overline{w}\Delta w - w\Delta\overline{w}) \, dx = \int_{\partial B(0,R)} (\overline{w}w_r - w\overline{w}_r) \, dS.$$

Then since $|w_r - i\sigma w|^2 = |w_r|^2 + |\sigma w|^2 - 2i(w_r\overline{w} - \overline{w}_rw)$

$$\int_{\partial B(0,R)} |w_r|^2 + \sigma^2 |w|^2 \, dS = \int_{\partial B(0,R)} |w_r - i\sigma w|^2 \, dS \to 0$$

Now, we write $w(x_0)$ in forms of Φ as

$$w(x_0) = \int_{B(0,R)} \delta_{x_0} w \, dx = \int_{B(0,R)} \left(-\Delta \Phi - \lambda \Phi \right) \cdot w$$

$$= \int_{B(0,R)} \Delta w \cdot \Phi - \Delta \Phi \cdot w \, dx = \int_{\partial B(0,R)} \left(\Phi w_r - w \Phi_r \right) dS$$

$$\leq \left(\frac{1}{\sigma} \int_{\partial B(0,R)} |w_r|^2 + \sigma^2 |w|^2 \, dS \right)^{1/2} \cdot \left(\frac{1}{\sigma} \int_{\partial B(0,R)} |\Phi_r|^2 + \sigma^2 |\Phi|^2 \, dS \right)^{1/2}$$

One could easily verify that

$$\left(\frac{1}{\sigma} \int_{\partial B(0,R)} |\Phi_r|^2 + \sigma^2 |\Phi|^2 \, dS\right)^{1/2} \le C \quad \text{for } \forall R > 0$$

Thus, since w satisfies the radiation condition, take $R \to \infty$ we conclude that $w(x_0) = 0$ for all $x_0 \in \mathbb{R}^3$

Rutgers University