
PDE homework Qi Ma Rutgers University

6 Chapter 6 Second order Elliptic PDE

1.[Ex.1] Consider Laplace’s Equation with potential function c:

−∆u+ cu = 0 (1.1)

and the divergence structure equation:

−div(aDv) = 0 (1.2)

where the function a is positive

(a) Show that if u solves (1.1) and w > 0 solves (1.1), then v := u/w solves (1.2)
for a := w2.

(b) Conversely, show that if v solves (1.2), then u := va1/2 solves (1.1) for some
potential c.

Proof. For (a): since u and w solves (1.1). w > 0

−∆u+ cu = 0 , −∆w + cw = 0

Now v = u/w =⇒ u = v · w.
Thus, −∆(vw) + c · vw = 0

⇐⇒ −∆v · w − 2∇v · ∇w − v ·∆w + c · vw = 0

⇐⇒ −∆v · w2 − 2∇v · ∇w · w = 0

⇐⇒ −div(w2Dv) = 0

For (b): if v solves (1.2), u = v · a1/2

⇒ − div
(
aD
( u

a1/2

))
= 0

⇐⇒ − div
(
a1/2Du

)
+ div

( u

2a1/2
Da
)
= 0

⇐⇒ a1/2∆u− 1

2a1/2
∇a · ∇u+

1

2a1/2
∇a · ∇u+ div

(
Da

2a1/2

)
u = 0

⇐⇒ −∆u+
1

a1/2
div
(

Da

2a1/2

)
u = 0
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2.[Ex.2] Let

Lu = −
n∑

i,j=1

(aijuxi
)xj

+ cu (2.1)

Prove that there exists a constant µ > 0 such that the corresponding bilinear form
B[·, ·] satisfies the hypotheses of the Lax-Milgram Theorem, provided

c(x) ≥ −µ (x ∈ U).

Proof. Define B[·, ·] : H1
0 (U)×H1

0 (U) → R as

B[u, v] =

∫
U

n∑
i,j=1

aijuxi
vxj

+ cuv

It is easy to see B[·, ·] is a bilinear form on U .
Since L is elliptic,

B[u, v] =

∫
U

∑
aijuxi

vxj
+ cuv

≤ Λ∥Du∥L2 · ∥Dv∥L2 + ∥c∥∞∥u∥L2∥v∥L2

≤ (∥c∥∞ + Λ) ∥u∥H1∥v∥H1

Thus, B[·, ·] is continuous. Moreover, assume c(x) ≥ −µ.
By Poincaré’s inequality, there exists C > 0 such that

∥u∥2H1 ≤ C∥Du∥2L2

Hence, we have

B[u, u] ≥ λ∥Du∥2L2 +

∫
U

cu2

≥ λ∥Du∥2L2 − µ∥u∥2L2

≥
(
λ

C
− µ

)
∥u∥2H1

Let 0 < µ < λ
C
, when c(x) > µ,

B[u, u] ≳ ∥u∥2H1

This shows the coercivity of B[·, ·]
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3.[Ex.3] A function u ∈ H2
0 (U) is a weak solution of this boundary-value problem

for the biharmonic equation −∆2u = f in U

u = ∂u
∂ν

= 0 on ∂U
(3.1)

provided ∫
U

∆u∆v dx =

∫
U

fv dx (3.2)

for all v ∈ H2
0 (U). Given f ∈ L2(U), prove that there exists a unique weak solution

of (3.1).

Proof. Existence: Define B[·, ·] : H2
0 (U)×H2

0 (U) → R as

B[u, v] =

∫
U

∆u ·∆v dx

Obviously B[·, ·] is linear, continuous. By Poincaré’s inequality, applying some
integration by parts, we also have coercivity:

B(u, u) =

∫
U

(∆u)2 dx =
n∑

i,j=1

∫
U

uxixi
uxjxj

dx

=
n∑

i,j=1

∫
U

uxixj
uxixj

dx =

∫
U

|D2u|2 dx

≥ C∥u∥2H2
0

Thus, the Lax–Milgram Theorem shows that for given f ∈ L2(U), there exists a
solution u ∈ H2

0 (U) to (3.1).
Uniqueness: Let u1, u2 both be solutions to (3.1).
Define u = u1 − u2, then u is a weak solution to−∆2u = 0 in U

u = ∂u
∂ν

= 0 on ∂U

And

∥u∥2H2
0
≲ ∥D2u∥2L2 =

∫
U

(∆u)2 dx =

∫
U

0 · u dx = 0

=⇒ u ≡ 0
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4.[Ex.4] Assume U is connected. A function u ∈ H1(U) is a weak solution of
Neumann’s problem −∆u = f in U

∂u
∂ν

= 0 on ∂U
(4.1)

if ∫
U

Du ·Dv dx =

∫
U

fv dx (4.2)

for all v ∈ H1(U). Suppose f ∈ L2(U). Prove (4.1) has a weak solution if and
only if ∫

U

f dx = 0 (4.3)

Proof. On the one hand, if u is a weak solution, let v = 1 in U . Then (4.2) gives∫
U

f dx =

∫
U

Du · 0 dx = 0.

On the other hand, if
∫
U
f dx = 0, let M :=

{
f ∈ L2 :

∫
U
f dx = 0

}
, M 1 :=

M ∩H1. Define B[·, ·] : M1 ×M1 → R as

B[u, v] =

∫
U

Du ·Dv dx

It is easy to verify B[u, v] is bilinear and continuous. By Poincaré’s inequality, in
M1, we have ∫

U

u2 dx ≤ C

∫
U

|Du|2 dx.

Thus, B[·, ·] satisfies the hypotheses of the Lax–Milgram *Theorem.

⇒ ∃u ∈ M1 such that for all v ∈ M1,

∫
U

Du ·Dv dx =

∫
U

fv dx.

To make u a weak solution, we need to take v ∈ H1, not M1. Let v ∈ H1. Then
v −

∫
U
v dx ∈ M1.

⇒
∫
U

Du ·Dv dx =

∫
U

Du ·D
(
v −

∫
U

v dx

)
dx

=

∫
U

f

(
v −

∫
U

v

)
dx

=

∫
U

fv −
∫
U

v ·
∫
U

f =

∫
U

fv.

Thus, u is the weak solution.
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5.[Ex.5] Explain how to define u ∈ H1(U) to be a weak solution of Poisson’s
equation with Robin boundary conditions:−∆u = f in U

u+ ∂u
∂ν

= 0 on ∂U
(5.1)

Discuss the existence and uniqueness of a weak solution for a given f ∈ L2(U).

Proof. Apply integration by parts,∫
U

fv dx =

∫
U

−∆u · v dx =

∫
U

∇u · ∇v dx−
∫
∂U

∂u

∂ν
v dx

=

∫
U

∇u · ∇v dx+

∫
∂U

u · v dx.

Then it is reasonable to define u ∈ H1(U) as a weak solution if∫
U

∇u · ∇v dx+

∫
∂U

u · v dx =

∫
U

f · v dx for all v ∈ H1(U).

Define
B[u, v] =

∫
U

∇u · ∇v dx+

∫
∂U

u · v dx.

Then B[·, ·] is bilinear and bounded, since we have the trace inequality∫
∂U

|u|2 ds ≤ C∥u∥2H1 .

And Poincaré’s inequality,∫
U

|u|2 dx ≤ C

(∫
U

|∇u|2 dx+

∫
∂U

|u|2 ds
)

shows the coercivity of B[·, ·]. Thus, we can apply the Lax–Milgram Theorem to
deduce the existence of a weak solution.
For uniqueness, assume u1 and u2 are two weak solutions. Let u = u1 − u2. Then,∫

U

|∇u|2 dx+

∫
∂U

|u|2 ds =
∫
U

0 · u dx = 0.

Thus, ∇u ≡ 0, u|∂U ≡ 0 =⇒ u = 0.
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6.[Ex.6] Suppose U is connected and ∂U consists of two disjoint, closed sets Γ1

and Γ2. Define what if means for u to be a weak solution of Poisson’s equation
with mixed Dirichlet-Neumann Boundary Conditions:

−∆u = f in U

u = 0 on Γ1

∂u
∂ν

= 0 on Γ2

(6.1)

Discuss the existence and uniqueness of weak solutions.

Proof. Define
H(U) =

{
u ∈ H1(U) : u = 0 on Γ1

}
,

it is easy to see H(U) is still a Hilbert space.
A weak solution to (6.1) is defined as u ∈ H(U) such that∫

U

fv dx =

∫
U

∇u · ∇v dx for all v ∈ H(U).

By the standard Lax–Milgram Theorem, notice

B[u, v] :=

∫
U

∇u · ∇v dx

is bilinear, continuous, and coercive. Since Poincaré’s inequality works in H, we
deduce the existence.
For uniqueness, it is also standard as we did in [Ex.5].
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7.[Ex.7] Let u ∈ H1(Rn) have compact support and be a weak solution of the
semilinear PDE

−∆u+ c(u) = f in Rn, (7.1)

where f ∈ L2(Rn) and c : R → R is smooth, with c(0) = 0 and c′ ≥ 0. Prove
u ∈ H2(Rn).
(Hint: Mimic the proof of Theorem 1 in §6.3.1, but without the cutoff function ζ.)

Proof. Since u is a weak solution, we have∫
U

∇u · ∇v + c(u) · v dx =

∫
U

f · v for all v ∈ H1(Rn).

Take v = D−h(Dhu) ∈ H1(Rn).

⇒
∫

|∇(Dhu)|2 +Dh(c(u)) ·Dhu =

∫
f ·D−hDhu dx.

Now since c′ ≥ 0 ⇒ c is increasing, Dh(c(u)) ·Dhu ≥ 0.

⇒
∫

|∇(Dhu)|2 ≤
∫

f ·D−hDhu dx

≤ ∥f∥L2 · ∥D−hDhu∥L2

≤ ∥f∥L2 · ∥∇Dhu∥L2

Thus we have

∥Dh(∇u)∥L2 = ∥∇(Dhu)∥L2 ≤ ∥f∥L2 for all h ∈ Rn.

Let h → 0. This implies ∇u ∈ H1(Rn), i.e., u ∈ H2(Rn), with ∥∇2u∥L2 ≤ ∥f∥L2 .
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8.[Ex.8] Let u be a smooth solution of the uniformly elliptic equation Lu =

−
∑n

i,j=1 a
ij(x)uxixj

= 0 in U . Assume that the coefficients have bounded deriva-
tives.
Set v := |Du|2 + λu2 and show that

Lv ≤ 0 inU (8.1)

if λ is large enough. Deduce

∥Du∥L∞(U) ≤ C
(
∥Du∥L∞(∂U) + ∥u∥L∞(∂U)

)
(8.2)

Proof. Firstly, since
−
∑
i,j

aijuxixj
= 0,

differentiate both sides, we have

−
∑
i,j

D(aij)uxixj
=
∑
i,j

aij(Du)xixj
.

Now assume |Daij| ≤ M . And aij is uniformly elliptic:∑
i,j

aijξiξj ≥ Λ|ξ|2.

Since v = |Du|2 + λu2, we have

Lv = −
n∑

i,j=1

aij(x) · 2
(
(Du)xi

(Du)xj
+ (Du)xixj

·Du+ λuxi
uxj

+ λuuxixj

)
= −2

n∑
i,j=1

aij(x)
(
(Du)xi

(Du)xj
+ λuxi

uxj

)
+ 2

∑
i,j

D(aij(x))uxixj
·Du

≤ −2Λ|D2u|2 − 2λΛ|Du|2 + M

Λ
|Du|2 + Λ|D2u|2

≤ −Λ|D2u|2 −
(
2λΛ− M

Λ

)
|Du|2 ≤ 0 when λ ≥ M

2Λ2
.

Now Lv ≤ 0, by the maximum principle: supU |v| ≤ sup∂U |v|

⇒ ∥Du∥2L∞ ≤ sup
U

|v| ≤ sup
∂U

|Du|2 + λ sup
∂U

|u|2
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9.[Ex.9] Assume u is a smooth solution of Lu = −
∑n

i,j=1 a
ijuxixj

= f in U , u = 0

on ∂U , where f is bounded. Fix x0 ∈ ∂U . A barrier at x0 is a C2 function w such
that

Lw ≥ 1 in U, w(x0) = 0, w ≥ 0 on ∂U. (9.1)

Show that if w is a barrier at x0, there exists a constant C such that

|Du(x0)| ≤ C
∣∣∣∂w
∂ν

(x0)
∣∣∣.

Proof. Assume
sup
U

f+ = M.

Then

L(u−Mw) = f −M ≤ 0,

By the Maximum Principle, u−Mw ≤ 0 in U .
Since u = 0 on ∂U ,

|Du(x0)| =
∂u

∂ν
(x0).

And,
u−Mw(x0) = 0 = sup

U
(u−Mw).

By Hopf’s lemma,

∂

∂ν
(u−Mw) ≤ 0 =⇒ ∂u

∂ν
≤ M · ∂w

∂ν
.
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10.[Ex.10] Assume U is connected. Use (a) energy methods and (b) the maximum
principle to show that the only smooth solutions of the Neumann boundary-value
problem −∆u = 0 in U

∂u
∂ν

= 0 on ∂U

are u ≡ C, for some constant C.

Proof. (a) Energy methods.

0 =

∫
U

(−∆u) · u =

∫
U

|∇u|2 +
∫
∂U

∂u

∂ν
· u =

∫
U

|∇u|2

Thus, ∇u ≡ 0 a.e., which implies u ≡ C for some constant C.

(b) Maximum Principle.

−∆u ≤ 0 ⇒ u satisfies the maximum principle.

Suppose u is not constant, and u(x0) = max∂U |u| with x0 ∈ ∂U . Then by Hopf’s
lemma,

∂u

∂ν
(x0) > 0

That’s a contradiction to
∂u

∂ν

∣∣∣∣
∂U

= 0.

Thus, u ≡ C is a constant function.
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11.[Ex.11] Assume u ∈ H1(U) is a bounded weak solution of

−
n∑

i,j=1

(aijuxi
)xj

= 0 in U.

Let ϕ : R → R be convex and smooth, and set w = ϕ(u). Show w is a weak
subsolution; that is, B[w, v] ≤ 0 for all v ∈ H1

0 (U), v ≥ 0.

Proof. Take v ∈ C∞
c (U),

B[w, v] =

∫ n∑
i,j=1

aij (ϕ(u))xi
vxj

dx

=

∫ n∑
i,j=1

aijϕ′(u)uxi
vxj

dx

=

∫ n∑
i,j=1

aijuxi
(ϕ′(u)v)xj

dx−
∫ n∑

i,j=1

aijuxi
uxj

ϕ′′(u)v dx

≤
∫ n∑

i,j=1

aijuxi
(ϕ(u)v)xj

dx = 0

Since C∞
c (U) is dense in H1

0 (U), and B[·, ·] is continuous, the inequality holds for
all v ∈ H1

0 . Thus, w is a weak subsolution.
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12.[Ex.12] We say that the uniformly elliptic operator

Lu = −
n∑

i,j=1

aijuxixj
+

n∑
i=1

biuxi
+ cu

satisfies the weak maximum principle if for all u ∈ C2(U) ∩ C(U)Lu ≤ 0 in U

u ≤ 0 on ∂U

implies that u ≤ 0 in U .
Suppose that there exists a function v ∈ C2(U)∩C(U) such that Lv ≥ 0 in U and
v > 0 on U . Show that L satisfies the weak maximum principle.
(Hint: Find an elliptic operator M with no zeroth-order term such that w := u/v

satisfies Mw ≤ 0 in the region {u > 0}. To do this, first compute (v2wxi
)xj

.)

Proof. Let w := u
v
. Then w > 0 on {u > 0}, and w = 0 on ∂U .

L(w · v) = Lu ≤ 0

=⇒ −
∑
i,j

aijwxixj
· v − 2

∑
i,j

aijwxi
vxj

+ Lv · w +
n∑

i=1

biwxi
· v ≤ 0

=⇒ −
∑
i,j

aijwxixj
+

n∑
i=1

(
bi −

n∑
j=1

2aij
vxj

v

)
wxi

≤ −Lv

v
· w ≤ 0 in {u > 0}

Define

Mw := −
n∑

i,j=1

aijwxixj
+

n∑
i=1

(
bi −

n∑
j=1

2aij
vxj

v

)
wxi

.

Then M has no zero-th order term. By the maximum principle,

sup
U

w ≤ sup
∂U

w+ = 0 =⇒ w ≤ 0 in U =⇒ u ≤ 0 in U.
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13.[Ex.13] (Courant minimax principle) Let L = −
∑n

i,j=1(a
ijuxi

)xj
, where (aij) is

symmetric. Assume the operator L, with zero boundary conditions, has eigenvalues
0 < λ1 ≤ λ2 ≤ · · · . Show

λk = max
S∈Σk−1

min
u∈S⊥

∥u∥L2=1

B[u, u] (k = 1, 2, . . . ).

Here Σk−1 denotes the collection of (k − 1)-dimensional subspaces of H1
0 (U).

Proof. Let {wn}∞n=1 be the eigenfunctions with respect to {λk}∞k=1, and ∥wn∥L2 = 1.
Then {wn}∞n=1 forms an orthonormal basis in L2(U).
Let S0 := span{w1, . . . , wk−1} which has dimension k − 1, and wk ∈ S⊥

0 .

B[wk, wk] = (Lwk, wk) = λk.

And for u ∈ S⊥
0 , let

u =
∞∑
n=0

dk+nwk+n, with
∞∑
n=0

d2k+n = 1.

Then, we calculate

B[u, u] =
∞∑
n=0

d2k+nλk+n ≥ λk

∞∑
n=0

d2k+n = λk.

Thus,
min
u∈S⊥

0

B[u, u] = λk ≤ max
S∈Σk−1

min
u∈S⊥

B[u, u]. (13.1)

On the other hand, let S1 := span{w1, . . . , wk} which has dimension k. Thus, for
all S ∈ Σk, we could find u ∈ S⊥ ∩ S1. Let u =

∑k
n=1 dnwn, then

B[u, u] =
k∑

n=1

d2nλn ≤ λk ⇒ min
S⊥

B[u, u] ≤ λk.

Thus,
max

S∈Σk−1

min
u∈S⊥

B[u, u] ≤ λk. (13.2)

Combine (13.1) and (13.2), we conclude with

λk = max
S∈Σk−1

min
u∈S⊥

B[u, u].
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14.[Ex.14] Let λ1 be the principal eigenvalue of the uniformly elliptic, nonsym-
metric operator

Lu = −
n∑

i,j=1

aijuxixj
+

n∑
i=1

biuxi
+ cu,

taken with zero boundary conditions. Prove the ”max-min” representation for-
mula:

λ1 = sup
u

inf
x∈U

Lu(x)

u(x)
,

the ”sup” taken over functions u ∈ C∞(U) with u > 0 in U , u = 0 on ∂U , and the
”inf” taken over points x ∈ U .
(Hint: Consider the eigenfunction w∗

1 corresponding to λ1 for the adjoint operator
L∗.)

Proof. Let w1 be the eigenfunction of L corresponding to λ1.
Then w1 > 0 and smooth. Thus,

inf
x∈U

Lw1(x)

w1(x)
= λ1.

=⇒ λ1 ≤ sup
u∈C∞

c (U)
u>0

inf
x∈U

Lu(x)

u(x)
(14.1)

On the other hand, consider w∗
1 for the adjoint operator L∗.

Then ∫
U

Lu(x)

u(x)
u(x)w∗

1(x) dx =

∫
U

Lu · w∗
1 dx =

∫
U

u · L∗w∗
1 dx

= λ1

∫
U

u(x)w∗
1(x) dx

=⇒
∫
U

(
Lu(x)

u(x)
− λ1

)
u(x)w∗

1(x) dx = 0

Since u(x)w∗
1(x) > 0, we deduce

inf
x∈U

(
Lu(x)

u(x)
− λ1

)
≤ 0 for all u > 0, u ∈ C∞(U)

=⇒ sup
u

inf
x∈U

Lu(x)

u(x)
≤ λ1 (14.2)

Combine (14.1) and (14.2), we conclude.
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15.[Ex.15] (Eigenvalues and domain variations) Consider a family of smooth,
bounded domains U(τ) ⊂ Rn that depend smoothly upon the parameter τ ∈ R.
As τ changes, each point on ∂U(τ) moves with velocity v.
For each τ , we consider eigenvalues λ = λ(τ) and corresponding eigenfunctions
w = w(x, τ): −∆w = λw in U(τ)

w = 0 on ∂U(τ),

normalized so that ∥w∥L2(U(τ)) = 1. Suppose that λ and w are smooth functions
of τ and x. Prove Hadamard’s variational formula

λ̇ = −
∫
∂U(τ)

∣∣∣∣∂w∂ν
∣∣∣∣2 v · ν dS,

where λ̇ = d
dτ
λ and v · ν is the normal velocity of ∂U(τ).

(Hint: Use the calculus formula from §C.4.)

Proof. Since w(x, τ) is a weak solution, we have

λ =

∫
U

λw · w dx =

∫
U

|∇w|2 dx.

Differentiate with respect to τ , noticing |∇w|
∣∣
∂U

=
∣∣∂w
∂ν

∣∣ , and using calculus for-
mulas in §C.4, we get

λ̇ =

∫
∂U

|∇w|2 v · ν ds+
∫
U

d

dτ
|∇w|2 dx

=

∫
∂U

(
∂w

∂ν

)2

v · ν ds+
∫
U

∇w · ∇ẇ dx.

And since ∥w∥L2 ≡ 1, we have∫
U

∇w · ∇ẇ =

∫
U

λw · ẇ = λ · 1
2
· d

dτ
∥w∥2L2 = 0.

Thus,

λ̇ =

∫
∂U

(
∂w

∂ν

)2

v · ν ds.
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16.[Ex.16] (Radiation condition) If we separate variables to look for a complex-
valued solution of the wave equation having the form u = e−iσtw for w = w(x)

and σ ∈ R, σ ̸= 0, we are led to the eigenvalue problem

(∗) −∆w = λw in Rn

where λ := σ2.

(a) Show that w = eiσω·x solves (∗), provided |ω| = 1. Then u = eiσ(ω·x−t) is a
traveling wave function of the wave equation.

(b) Show that for n = 3, the function Φ := eiσ|x|

4π|x| solves

−∆Φ = λΦ + δ0 in R3.

(c) The Sommerfeld radiation condition requires for a solution of (∗) that

lim
r→∞

r(wr − iσw) = 0,

for wr := Dw · x
|x| . Prove that the solution w from (a) does not satisfy this

condition but that Φ from (b) does.

Proof. (a). Direct computation: −∆w = −|iσω|2eiσω·x = σ2eiσω·x = λw. Then
u = e−iσtw = eiσ(ω·x−t) solves the wave equation.
(b). We compute ∆Φ:

−∆Φ = eiσ|x| · −∆

(
1

4π|x|

)
−∆

(
eiσ|x|

)
· 1

4π|x|
− 2∇

(
eiσ|x|

)
· ∇
(

1

4π|x|

)
= δ0 + σ2eiσ|x| · 1

4π|x|
− 2iσeiσ|x|

4π|x|2
+

2iσeiσ|x|

4π|x|4
x · x

= δ0 + λΦ.

(c). Since we have wr − iσw =
(
iσω · x

|x| − iσ
)
eiσω·x. If we choose ω, x

|x| such that
ω · x

|x| = 0, then w = 1. r(wr − iσw) = −iσr does not converge to 0.

|Φr − iσΦ| =
∣∣∣∣ eiσ|x|4π|x|2

∣∣∣∣ ≤ 1

4πr2
=⇒ lim

r→∞
r |Φr − iσΦ| = 0.
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17.[Ex.17] (Continuation) Prove that if w is a complex-valued solution of eigen-
value problem (∗) in R3 and if w satisfies the radiation condition, then w ≡ 0.
(Hints: First observe that

0 =

∫
B(0,R)

(w∆w − w∆w) dx =

∫
∂B(0,R)

(wwr − wwr) dS.

Use this and the radiation condition to show∫
∂B(0,R)

|wr|2 + σ2|w|2 dS =

∫
∂B(0,R)

|wr − iσw|2 dS → 0

as R → ∞. Given now a point x0 ∈ R3, select R > |x0|. Then

w(x0) =

∫
∂B(0,R)

(Φwr − wΦr) dS,

where Φ = Φ(x− x0). Show the integral goes to zero as R → ∞.)

Proof. Follow the hints, firstly we observe

0 =

∫
B(0,R)

(w∆w − w∆w) dx =

∫
∂B(0,R)

(wwr − wwr) dS.

Then since |wr − iσw|2 = |wr|2 + |σw|2 − 2i(wrw − wrw)∫
∂B(0,R)

|wr|2 + σ2|w|2 dS =

∫
∂B(0,R)

|wr − iσw|2 dS → 0

Now, we write w(x0) in forms of Φ as

w(x0) =

∫
B(0,R)

δx0w dx =

∫
B(0,R)

(−∆Φ− λΦ) · w

=

∫
B(0,R)

∆w · Φ−∆Φ · w dx =

∫
∂B(0,R)

(Φwr − wΦr) dS

≤
(
1

σ

∫
∂B(0,R)

|wr|2 + σ2|w|2 dS
)1/2

·
(
1

σ

∫
∂B(0,R)

|Φr|2 + σ2|Φ|2 dS
)1/2

One could easily verify that(
1

σ

∫
∂B(0,R)

|Φr|2 + σ2|Φ|2 dS
)1/2

≤ C for ∀R > 0

Thus, since w satisfies the radiation condition, take R → ∞ we conclude that
w(x0) = 0 for all x0 ∈ R3
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