PDE homework Qi Ma Rutgers University

6 Chapter 6 Second order Elliptic PDE

1.[Ex.1] Consider Laplace’s Equation with potential function c:

—Au+cu=0 (1.1)
and the divergence structure equation:

—div(aDv) =0 (1.2)

where the function a is positive

(a) Show that if u solves (EI) and w > 0 solves (), then v := u/w solves (@)

for a := w?.

(b) Conversely, show that if v solves (), then u := va'/? solves (El) for some

potential c.

Proof. For (a): since u and w solves (1.1). w >0
“Au+cu=0 , —-Aw+cw=0

Now v =u/w = u=v-w.
Thus, —A(vw) +c¢-vw =0

— —Av-w—-—2Vv-Vw—v-Aw+c-vw=0
—Av-w?—2Vv-Vw-w =0
< —div(w’Dv) =0

For (b): if v solves (1.2), w=wv-a"?

= —div(aD( —5)) =0

<— —div (a1/2Du) + div ( Da) =0

2q1/2

Va-Vu+

1/2
a’"Au — 2a 1/2 2a 1/2

Da
—Va - Vu+d1v<2 1/2)u—0

) Da
= —Au+&1/2d1v (2a1/2)U—0
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2.[Ex.2] Let

n

Lu=— Z(aijuxi)xj + cu (2.1)

ij=1
Prove that there exists a constant p > 0 such that the corresponding bilinear form
B[, -] satisfies the hypotheses of the Lax-Milgram Theorem, provided

c(lx)>—p (zel).

Proof. Define B[-,-] : H}(U) x H}(U) — R as

Blu,v] = /U Z a7 Uy, vy, + cuv

1,j=1

It is easy to see B[, -] is a bilinear form on U.

Since L is elliptic,

Blu,v] = /UZaijuxivxj + cuv

< M[Dul[z - [[Dvl|z + l[elloolull z2[[v]] 2
< (llelloe + A lull ez [[o] 1

Thus, B[, ] is continuous. Moreover, assume c(z) > —pu.

By Poincaré’s inequality, there exists C' > 0 such that
lullf < Cl|DullZ
Hence, we have

Blu,u] > \||Dul|3. +/ cu?
U

> M| Dul|zz — plulZ2

A
> (5 n) Il

Blu,u] 2 [|ullf:

Let 0 < pu < 2, when c(z) > 4,

This shows the coercivity of B[, ]
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3.[Ex.3] A function u € HZ(U) is a weak solution of this boundary-value problem

for the biharmonic equation

—A%y = in U
/ (3.1)
U = % =0 ondU

provided

/U Aulv dz = /U fo dz (3.2)

for allv € HZ(U). Given f € L*(U), prove that there exists a unique weak solution

of (.1).

Proof. Existence: Define B[-,-]: H3(U) x H2(U) — R as
Blu, v] :/Au-Avdaz
U

Obviously B[, ] is linear, continuous. By Poincaré’s inequality, applying some

integration by parts, we also have coercivity:

B(u,u) = /U(Au)2 dr = Z /quixiux].xj dx

ij=1
n

= Z/Uacmjuij dx:/ |D2u|2dx

> Clulls

Thus, the Lax-Milgram Theorem shows that for given f € L*(U), there exists a
solution u € HZ(U) to (@)

Uniqueness: Let u;,us both be solutions to (El!)

Define u = u; — us, then u is a weak solution to

—A%y=0 inU

u:%:O on oU

And

Jully £ 102l = [ (@ de = [ 0-ude =0

— u=0
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4.[Ex.4] Assume U is connected. A function u € H*(U) is a weak solution of

Neumann’s problem

—Au = in U
u=f in (4.1)
% =0 on OU

/U Du - Dv dz = /U fo da (4.2)

for all v € HY(U). Suppose f € L*(U). Prove (@) has a weak solution if and
only if

/Uf dx =0 (4.3)

Proof. On the one hand, if u is a weak solution, let v = 1 in U. Then (4.2) gives

/fdxz/Duﬂda:zO.
U U

On the other hand, if [, fdz = 0, let M = {f € L*: [, fdz =0}, M"' :=
M N H'. Define B[-,-] : M* x M' - R as

Blu,v] = / Du - Dvdx
U

It is easy to verify B[u,v] is bilinear and continuous. By Poincaré’s inequality, in

M*', we have
/qua:SC'/ |Dul? dx.
U U

Thus, B, -] satisfies the hypotheses of the Lax—Milgram *Theorem.
= Ju € M such that for all v € M*, /Du-Dvda::/fvdx.
U U

To make u a weak solution, we need to take v € H', not M'. Let v € H'. Then
v— [,vdr e M.

:»/UDu-Dvdxz/UDu-D(v—/Uvdx> da
:/Uf(v—/Uv)dx
:/U v—/Uv~/Uf:/va.

Thus, u is the weak solution.
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O

5.[Ex.5] Explain how to define u € H'(U) to be a weak solution of Poisson’s

equation with Robin boundary conditions:

—Au=f inU

(5.1)
U+ g—z =0 onoU

Discuss the existence and uniqueness of a weak solution for a given f € L2(U).

Proof. Apply integration by parts,

/fvdx—/—Au-vdm-/Vu-Vvdx—/ @vdx
U U U au OV

:/VU'VUdI+/ u-vdr.
U U

Then it is reasonable to define u € H'(U) as a weak solution if

/Vu-Vvdx—i—/ u-vdx:/f.udx for all v € H'(U).
U oUu U

Define
B[u,v]:/Vu~Vvdx+/ u-vdr.
U ouU

Then B[, ] is bilinear and bounded, since we have the trace inequality
/ fuf? ds < Clfull.
au

And Poincaré’s inequality,

/ lul*dx < C (/ |Vul? dac+/ ]u|2ds>
U U ouU

shows the coercivity of B[-,-]. Thus, we can apply the Lax-Milgram Theorem to
deduce the existence of a weak solution.

For uniqueness, assume u; and us are two weak solutions. Let u = u; — uy. Then,

/|Vu|2dw+/ |u|2ds:/0-ud93:0.
U ouU U

Thus, Vu =0, ulsgy =0 = u=0.
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6.[Ex.6] Suppose U is connected and OU consists of two disjoint, closed sets T’y
and I's. Define what if means for u to be a weak solution of Poisson’s equation

with mized Dirichlet-Neumann Boundary Conditions:

—Au=f inU
u=20 onI'y (6.1)
-0 onl,

Discuss the existence and uniqueness of weak solutions.

Proof. Define
HU)={ue H'(U):u=0o0nT4},

it is easy to see H(U) is still a Hilbert space.
A weak solution to (6.1) is defined as u € H(U) such that

/ fodr = / Vu-Voudz forallve H(U).
U U
By the standard Lax—Milgram Theorem, notice
Blu,v] := / Vu-Vvdx
U
is bilinear, continuous, and coercive. Since Poincaré’s inequality works in H, we

deduce the existence.

For uniqueness, it is also standard as we did in [Ex.5].
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7.[Ex.7] Let v € H'(R") have compact support and be a weak solution of the

semilinear PDE
—Au+c(u) = f inR", (7.1)

where f € L*(R") and ¢ : R — R is smooth, with ¢(0) = 0 and ¢ > 0. Prove
u € H*(R").
(Hint: Mimic the proof of Theorem 1 in §6.3.1, but without the cutoff function (.)

Proof. Since u is a weak solution, we have

/UVu-Vv—i—c(u) cvdr = /Uf-v for all v € H'(R™).
Take v = D_;(Dyu) € H(R™).

= / V(D) + Di(c(u)) - Dy = / Doy Dyuda.

Now since ¢ > 0 = ¢ is increasing, Dy (c(u)) - Dpu > 0.

:/|V(Dhu)]2 < /f-D_hDhudx
< N fllzz - [[D-nDyul| 2
< |[fllz2 - [V Dyul| 2

Thus we have
|Dn(Vu)||rz = |V(Dpu)llrz < ||fllzz  for all h € R™.

Let h — 0. This implies Vu € H'(R"), i.e., u € H2(R"), with ||[V?ul[z2 < || f]lz2-
[
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8.[Ex.8] Let u be a smooth solution of the uniformly elliptic equation Lu =

— Z?j:l a¥ (2)Ug;e; = 0 in U. Assume that the coefficients have bounded deriva-

tives.
Set v := |Dul? + A\u? and show that
Lv <0 inU (8.1)

if A is large enough. Deduce

|Dullz=w) < C(IDullzen) + lull=on) (8.2

Proof. Firstly, since

differentiate both sides, we have

- Z D(a7 Y uy,p; = Z a” (D) gy,
1,J

1,J

Now assume |Da®| < M. And a¥ is uniformly elliptic:
> aigg; > M
i3

Since v = |Du|? + Au?, we have

n

Lv=— Z a?(z) - 2 ((Du)g, (Du)g, + (D) gy, - DU+ Mgy, + MNutly,, )

7,7=1
= =2 a"(x) (Du)s,(D)s, + Mig,ua,) +2 Y D(a"(x))tg,, - Du
i,j=1 i,J

M
< —2A|D?*ul* — 2AA|Dul? + X|Du|2 + A|D*ul?

M M
< —A|D*ul? — (2)\/\ - K) |Du|?* <0 when \ > YL

Now Lv < 0, by the maximum principle: sup;; |v| < supg |v]

= [|Dul[7~ < sup|v] < sup|Dul* + Asup |uf”
U ouU ouU

Page 8 of @



PDE homework Qi Ma Rutgers University

9.[Ex.9] Assume u is a smooth solution of Lu = =371 @Yy, = f in U, u=0
on OU, where f is bounded. Fix 2° € OU. A barrier at 2° is a C? function w such
that

Lw>1inU, w")=0, w>0ondl. (9.1)

Show that if w is a barrier at 2°, there exists a constant C' such that

ow
0 0
|Du(:c)]<C‘ V(a:)‘

Proof. Assume

sup f+ = M.
U

Then
L(u—Mw)=f—M <0,

By the Maximum Principle, u — Mw < 0 in U.
Since u = 0 on OU,

Ju
| Du(zo)| = 2~ (o).
And,
u— Muw(zg) =0 = sup(u — Mw).
U
By Hopf’s lemma,
0 ou ow
L — < <M=
ay(u Muw) <0 = 8V_M 5
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10.[Ex.10] Assume U is connected. Use (a) energy methods and (b) the maximum

principle to show that the only smooth solutions of the Neumann boundary-value

problem
—Au=0 inU
g—g =0 on oU

are u = C, for some constant C.

Proof. (a) Energy methods.

O:/(—Au)-u:/|Vu|2+/ @-u:/|VU|2
U U ou OV U

Thus, Vu = 0 a.e., which implies u = C' for some constant C.

(b) Maximum Principle.

—Au <0 = wu satisfies the maximum principle.

Suppose u is not constant, and u(xg) = maxgy |u| with g € OU. Then by Hopf’s

lemma,
ou
%(1'0) >0
That’s a contradiction to
ou
— =0.
o |5y

Thus, u = C' is a constant function.
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11.[Ex.11] Assume u € H'(U) is a bounded weak solution of

—E auzw in U.

i,7=1

Let ¢ : R — R be convex and smooth, and set w = ¢(u). Show w is a weak
subsolution; that is, Blw,v] <0 for all v € Hj(U), v > 0.

Proof. Take v € C*(U),

Blw, v] /Z ” ijdx

231

/ Z a”gb U) Uy, Uy, d

z]l

= / Z au,, (¢'(u)v),, dv— / i aug g, ¢ (u)v do

ij=1 ij=1

/Za U, ( xjda::()

i,7=1

Since C2°(U) is dense in H}(U), and B[, ] is continuous, the inequality holds for
all v € H}. Thus, w is a weak subsolution.
O
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12.[Ex.12] We say that the uniformly elliptic operator

n

n
Lu=— E B Wy g b'u,, + cu
i=1

3,j=1

satisfies the weak maximum principle if for all u € C?(U) N C(U)

Lu<0 inU
u <0 on oU

implies that v < 0 in U.

Suppose that there exists a function v € C?(U)NC(U) such that Lv > 0 in U and
v > 0on U. Show that L satisfies the weak maximum principle.

(Hint: Find an elliptic operator M with no zeroth-order term such that w := u/v
satisfies Mw < 0 in the region {u > 0}. To do this, first compute (v*wy, ), .)

Proof. Let w:=%. Then w > 0 on {u > 0}, and w = 0 on JU.

L(w-v)=Lu<0

n
- — E a7 Wy, + 0 — 2 g a? Wy, Vg, + L - w + E b'w,, -v <0
%] 1,7 =1

n

N N v, L
- —Zawwxigﬁj +Z (bZ —ZQa”ﬁ) Wy, < —TU-w <0 in{u> 0}
,J

=1 j=1

Define

Then M has no zero-th order term. By the maximum principle,

supw <supw =0 = w<0inU = u<0inU.
U ou
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13.[Ex.13] (Courant minimax principle) Let L = — Y " (aYu,),,, where (a”) is

symmetric. Assume the operator L, with zero boundary conditions, has eigenvalues
0< A\ <Ay <---. Show

A= max min Blu,u] (k=1,2,...).
S€Xp—1 uest
l[ull p2=1

Here 3;_; denotes the collection of (k — 1)-dimensional subspaces of H}(U).
Proof. Let {w,}>, be the eigenfunctions with respect to {\;}32, and ||wy| 2 = 1.

Then {w,}5°; forms an orthonormal basis in L?(U).

Let Sy := span{wy, ..., wy_; } which has dimension k — 1, and wy, € S;".

And for u € Sy, let

o (o]
. 2
U= g ApsnWiin, With E dirn, = 1.

Then, we calculate

Blu,u] = Z di+n>\k+n > Ak Z di+n = Ak
n=0 n=0

Thus,

min Blu,u] = A\ < max min Blu, u. (13.1)
ueSy Se¥p_1 uesSt

On the other hand, let S; := span{wy, ..., w;} which has dimension k. Thus, for
all S € ¥, we could find u € S+ N Sy. Let u = ZZ:1 d,w,, then

k
Blu,u] = Zdi)\n <X = HSHLH Blu, u] < .
n=1

Thus,

max min Blu,u] < Ag. (13.2)
S€Xp—1 uesSt

Combine (13.1) and (13.2), we conclude with

Ar = max min Blu,ul.
S€X)_1 uesSt
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14.[Ex.14] Let A; be the principal eigenvalue of the uniformly elliptic, nonsym-

metric operator
n n
Lu=— E Y Ug,q; + E b'uy, + cu,
ij=1 i=1
taken with zero boundary conditions. Prove the "max-min” representation for-

. . Lu(x)
Av=suplaf = o

mula:

the "sup” taken over functions u € C*°(U) with u > 0in U, u = 0 on OU, and the
”inf” taken over points z € U.

(Hint: Consider the eigenfunction wj corresponding to A\; for the adjoint operator
L*.)

Proof. Let w; be the eigenfunction of L corresponding to A;.
Then w; > 0 and smooth. Thus,
L
ing L@ _

zeU wq (IL‘)

L
= A\ < sup inf ()
wec Uy 7€V u(T)
u>0

(14.1)

On the other hand, consider w; for the adjoint operator L*.
Then

[ puiwy e = [ nwide= [ ue i
= [ @it ds

. /U <L“(“"> _ )\1> w(z)wt (z) dz = 0

Since u(z)wi(z) > 0, we deduce

L
inf < u(@) _ )\1> <0 forallu>0, uecC®U)

zeU U(ZL‘)

L
=—> sup inf u(z)

<\ 14.2
w el u(z) — (14.2)

Combine (14.1) and (14.2), we conclude. O
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15.[Ex.15] (Eigenvalues and domain variations) Consider a family of smooth,
bounded domains U(7) C R" that depend smoothly upon the parameter 7 € R.
As 7 changes, each point on OU(7) moves with velocity v.
For each 7, we consider eigenvalues A\ = A(7) and corresponding eigenfunctions
w=w(z,T):

—Aw =X w in U(T)

w =0 on oU(T),

normalized so that ||w| ;2@ (-)) = 1. Suppose that A and w are smooth functions

of 7 and z. Prove Hadamard’s variational formula

-
oU(r)

where \ = 4 X and v - v is the normal velocity of 9U (7).
(Hint: Use the calculus formula from §C.4.)

2

w v-vds,

ov

Proof. Since w(z,T) is a weak solution, we have

)\:/)\w-wdx:/|Vw|2d:v.
U U

Differentiate with respect to 7, noticing |Vw| ‘ ou = ‘a—ﬂ , and using calculus for-

mulas in §C.4, we get

: d
A:/ |Vw|2v-uds+/ —|Vw|? dz
U v dr

2
:/ (8_w) V-Vds+/Vw-dex.
ou \ OV U

And since ||w||z2 = 1, we have

. . 1 d

Thus,

Page 15 of @



PDE homework Qi Ma Rutgers University

16.[Ex.16] (Radiation condition) If we separate variables to look for a complex-

valued solution of the wave equation having the form u = e “'w for w = w(x)

and 0 € R, 0 # 0, we are led to the eigenvalue problem
(*) —Aw=Mw inR"

where \ := o2.

(a) Show that w = €7“*® solves (*), provided |w| = 1. Then u = ¢@=71 ig a
traveling wave function of the wave equation.

ol

10|x
\
£ solves
4r|z|

(b) Show that for n = 3, the function ¢ :=

—A® = \P + 0, in R

(c) The Sommerfeld radiation condition requires for a solution of (x) that

lim r(w, —icw) = 0,
7—$00

for wy, := Dw - ;. Prove that the solution w from (a) does not satisfy this
condition but that ® from (b) does.

Proof. (a). Direct computation: —Aw = —liow|?¢7*?* = ¢%e7“?* = \w. Then
u = e 7w = @1 golves the wave equation.

(b). We compute Ad:

_Aq):ei"'f“-—A( 1 )—A(ei"m)- 1 _ov (eiaxl).v< 1 )

Arla| Arla| 7]
8o + o2elol! 1 2igeil®l N 2igeiolel
= oe . _ o
0 drlz|  dm|z? Aot

= 0o + \.

(c). Since we have w, —iow = (iaw Srie ia) e If we choose w, ra7 such that

w: =0, then w = 1. r(w, —iow) = —ior does not converge to 0.
o, —iod| = | < lim 7 [®, — ic®
@, — o] = dr|w|?| — dmr? — rggor| r—i0®[ =0,
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17.[Ex.17] (Continuation) Prove that if w is a complex-valued solution of eigen-
value problem (x) in R?® and if w satisfies the radiation condition, then w = 0.
(Hints: First observe that

0= / (WAw — wAw) dzx = / (ww, — ww,) dS.
B(0,R) 0B(0,R)

Use this and the radiation condition to show

/ Jw,|* + o?|w|* dS = / lw, —iocw*dS — 0
9B(0,R) 0B(0,R)

as R — oo. Given now a point zy € R3, select R > |zg|. Then
w(xg) = / (dw, — wd,) dS,
9B(0,R)

where ® = ®(x — x). Show the integral goes to zero as R — 00.)

Proof. Follow the hints, firstly we observe
0= / (WAw — wAW) dr = / (ww, —ww,)dS.
B(0,R) 0B(0,R)
Then since |w, — iow|?* = |w,|* + |ow|* — 2i(w, W — W,w)

/ lw,|* + o*w|? dS = / lw, —iocw*dS — 0
9B(0,R) O0B(0,R)

Now, we write w(zg) in forms of ¢ as

w(xg) = / dpow dx = / (—AP — \D) - w
B(0,R) B(0,R)

:/ Aw~<I>—A(I>-wd:c:/ (dw, — w®,)dS
B(0,R) 0B(0,R)

1 1z rq 1/2
< (—/ \wr]2+02]w]2d5> : (—/ \(I)r\2+02\<1>\2d8)
0 JoB(0,R) 0 JoB(0,R)

One could easily verify that

1 1/2
<—/ |c1>7,|2+02\c1>\2d5> <C forVR>0
9B(0,R)

g

Thus, since w satisfies the radiation condition, take R — oo we conclude that
w(x) = 0 for all xy € R3 O
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