5 Sobolev Spaces

1.[Ex.1] Suppose $k \in \{0, 1, ...\}, 0 < \gamma \leq 1$. Prove $C^{k,\gamma}(\overline{U})$ is a Banach space

Proof. Suppose $\{u_n\}_{n\in\mathbb{N}}$ is a Cauthy sequence in $C^{k,\gamma}(\overline{U})$. For $\forall \varepsilon > 0$, there exists $N \in \mathbb{N}$, when n, m > N we have

$$\|\partial^{\alpha} u_n - \partial^{\alpha} u_m\|_{L^{\infty}} \le \|u_n - u_m\|_{C^{k,\gamma}} \le \varepsilon$$
(1.1)

for $\forall \alpha$ with $|\alpha| \leq k$. Thus $\partial^{\alpha} u_n$ forms a Cauthy Sequence in L^{∞} . There exists a function g_{α} such that

$$\|\partial^{\alpha} u_n - g_{\alpha}\|_{L^{\infty}} \to 0$$

Especially assume u_n converges to u in L^{∞} . Since $\partial^{\alpha} u_n$ are continuous and uniformly converges to g_{α} , thus g_{α} is continuous. We claim that $u \in C^{k,\alpha}$ with $\partial^{\alpha} u = g_{\alpha}$. It suffices to prove $\partial_1 u = g_1$, others follow by induction on α .

Without loss of generality, assume $x = (x_1, x') \in B_r(0) \subset U$. Notice $u_n(x_1, x') = u_n(0, x') + \int_0^{x_1} \partial_1 u_n(s, x') ds$. We have

$$u(x) - \int_0^{x_1} g_1(s, x') ds = \lim_{n \to \infty} \left(u_n(x) - \int_0^{x_1} \partial_1 u_n(s, x') \, ds \right)$$
$$= \lim_{n \to \infty} u_n(0, x') = u(0, x')$$
(1.2)

Thus $\partial_1 u(x) = g_1$, by induction we could see $u \in C^k(\overline{U})$. Now we show $\partial^{\alpha} u \in C^{\gamma}$ for $|\alpha| = k$. We know that

$$\begin{aligned} [\partial^{\alpha} u_n]_{\gamma} &\leq \|u_n\|_{C^{k,\gamma}} \leq M \\ \implies & |\partial^{\alpha} u_n(x) - \partial^{\alpha} u_n(y)| \leq M \|x - y\|^{\gamma} \\ \implies & |\partial^{\alpha} u(x) - \partial^{\alpha} u(y)| = \lim_{n \to \infty} |\partial^{\alpha} u_n(x) - \partial^{\alpha} u_n(y) \\ &\leq M \|x - y\|^{\gamma} \text{ for } \forall x \neq y \end{aligned}$$

Hence, $u \in C^{k,\alpha}(\bar{U})$, with $||u_n - u||_{C^{k,\gamma}} \to 0$. That implies $C^{k,\gamma}(\bar{U})$ is a Banach Space

2.[Ex.2] Assume $0 < \beta < \gamma \leq 1$. Prove the interpolation inequality

$$\|u\|_{C^{0,\gamma}(\bar{U})} \le \|u\|_{C^{0,\beta}(U)}^{\frac{1-\gamma}{1-\beta}} \cdot \|u\|_{C^{0,1}(U)}^{\frac{\gamma-\beta}{1-\beta}}$$
(2.1)

Proof. Notice that

$$\gamma = \beta \cdot \frac{1-\gamma}{1-\beta} + \frac{\gamma-\beta}{1-\beta}$$

Page 1 of 14

Recall that we define $||u||_{C^{0,\gamma}}$ as

$$\begin{split} \|u\|_{C^{0,\gamma}} &= \|u\|_{L^{\infty}} + \sup_{x \neq y} \frac{|u(x) - u(y)|}{\|x - y\|^{\gamma}} \\ &= \|u\|_{L^{\infty}}^{\frac{1-\gamma}{1-\beta} + \frac{\gamma-\beta}{1-\beta}} + \sup_{x \neq y} \frac{|u(x) - u(y)|^{\frac{1-\gamma}{1-\beta} + \frac{\gamma-\beta}{1-\beta}}}{\|x - y\|^{\beta \cdot \frac{1-\gamma}{1-\beta} + \frac{\gamma-\beta}{1-\beta}}} \\ &\leq \|u\|_{L^{\infty}}^{\frac{1-\gamma}{1-\beta}} \cdot \|u\|_{L^{\infty}}^{\frac{\gamma-\beta}{1-\beta}} + \Big(\sup_{x \neq y} \frac{|u(x) - u(y)|}{\|x - y\|^{\beta}}\Big)^{\frac{1-\gamma}{1-\beta}} \cdot \Big(\sup_{x \neq y} \frac{|u(x) - u(y)|}{\|x - y\|}\Big)^{\frac{\gamma-\beta}{1-\beta}} \\ &\leq \Big(\|u\|_{L^{\infty}} + \sup_{x \neq y} \frac{|u(x) - u(y)|}{\|x - y\|^{\beta}}\Big)^{\frac{1-\gamma}{1-\beta}} \cdot \Big(\|u\|_{L^{\infty}} + \sup_{x \neq y} \frac{|u(x) - u(y)|}{\|x - y\|}\Big)^{\frac{\gamma-\beta}{1-\beta}} \\ &= \|u\|_{C^{0,\beta}(U)}^{\frac{1-\gamma}{1-\beta}} \cdot \|u\|_{C^{0,1}(U)}^{\frac{\gamma-\beta}{1-\beta}} \end{split}$$

3.[Ex.3] Denote by U the open square $\{x \in \mathbb{R}^2 \mid |x_1| < 1, |x_2| < 1\}$. Define

$$u(x) = \begin{cases} 1 - x_1 & \text{if } x_1 > 0, \ |x_2| < x_1 \\ 1 + x_1 & \text{if } x_1 < 0, \ |x_2| < -x_1 \\ 1 - x_2 & \text{if } x_2 > 0, \ |x_1| < x_2 \\ 1 + x_2 & \text{if } x_2 < 0, \ |x_1| < -x_2 \end{cases}$$

For which $1 \le p \le \infty$ does u belongs to $W^{1,p}(U)$?

Proof. Obviously, $u \in L^p(U)$ for every $p \in [1, +\infty]$, we find the weak derivative of u.

Take $\varphi \in C_c^{\infty}(U)$, then we have

$$\begin{split} &\int_{U} u(x) \cdot \partial_{1}\varphi(x) \, dx \\ &= \int_{-1}^{1} \Big(\int_{|x_{1}| \ge |x_{2}|} (1 - |x_{1}|) \cdot \partial_{1}\varphi \, dx_{1} + \int_{|x_{1}| \le |x_{2}|} (1 - |x_{2}|) \cdot \partial_{1}\varphi \, dx_{1} \Big) \, dx_{2} \\ &= \int_{-1}^{1} \Big(\int_{|x_{1}| \ge |x_{2}|} (-|x_{1}|) \cdot \partial_{1}\varphi \, dx_{1} + (-|x_{2}|) \int_{|x_{1}| \le |x_{2}|} \partial_{1}\varphi \, dx_{1} \Big) \, dx_{2} \\ &= \int_{-1}^{1} \Big(|x_{2}| \cdot \varphi(|x_{2}|, x_{2}) + \int_{x_{1} > |x_{2}|} \varphi \, dx_{1} - |x_{2}| \cdot \varphi(-|x_{2}|, x_{2}) - \int_{x_{1} < -|x_{2}|} \varphi \, dx_{1} \\ &+ (-|x_{2}|) \cdot (\varphi(|x_{2}|, x_{2}) - \varphi(-|x_{2}|, x_{2})) \Big) dx_{2} \\ &= \int_{-1}^{1} \Big(\int_{x_{1} > |x_{2}|} \varphi \, dx_{1} - \int_{x_{1} < -|x_{2}|} \varphi \, dx_{1} \Big) dx_{2} \\ &= \int_{U}^{1} (\mathbf{1}_{\{x_{1} > |x_{2}|\} - \mathbf{1}_{\{x_{1} < -|x_{2}|\}}) \varphi(x) \, dx \end{split}$$

Hence, $-\partial_1 u = \mathbf{1}_{\{x_1 > |x_2|\}} - \mathbf{1}_{\{x_1 < -|x_2|\}}$ in weak sense. By the same discussion for $\partial_2 u$, we have

$$-\partial_1 u = \mathbf{1}_{\{x_1 > |x_2|\}} - \mathbf{1}_{\{x_1 < -|x_2|\}}$$
$$-\partial_2 u = \mathbf{1}_{\{x_2 > |x_1|\}} - \mathbf{1}_{\{x_2 < -|x_1|\}}$$

Thus $\nabla u \in L^p$ for every $p \in [1, +\infty]$. $u \in W^{1,p}(U)$ for every $p \in [1, +\infty]$

4.[Ex.4] Assume n = 1 and $u \in W^{1,p}(0,1)$ for some $1 \le p < \infty$.

- (a) Show that u is equal a.e. to an absolutely continuous function and u' (which exists a.e.) belongs to $L^p(0, 1)$.
- (b) Prove that if 1 , then

$$|u(x) - u(y)| \le |x - y|^{1 - \frac{1}{p}} \left(\int_0^1 |u'|^p dt\right)^{1/p}$$
(4.1)

for a.e. $x, y \in [0, 1]$.

Proof. (a) Let g be the weak derivative of u. Consider $f(x) \coloneqq \int_0^x g(t) dt$. Since $g \in L^p(0, 1)$, we have that f is absolutely continuous with f' = g a.e. Now for $\forall \varphi \in C_c^{\infty}(0, 1)$, we have

$$\int_0^1 u \cdot \varphi' \, dx = -\int g \cdot \varphi = \int f \cdot \varphi' \tag{4.2}$$

which implies

$$\int_0^1 (u-f) \cdot \varphi' = 0 \implies u = f + C \text{ a.e. for some constant } C \qquad (4.3)$$

Hence, u is absolutely continuous with u' = g a.e.

(b) By conclusion from (a), we know $u(x) = \int_0^x u'(t) dt + C$. Then we have

$$|u(x) - u(y)| \leq \int_0^1 \mathbf{1}_{[x,y]} |u'(t)| dt$$

$$\leq \left(\int_0^1 \mathbf{1}_{[x,y]}\right)^{1-1/p} \left(\int_0^1 |u'|^p\right)^{1/p} = |x - y|^{1-\frac{1}{p}} \left(\int_0^1 |u'|^p\right)^{1/p}$$
(4.4)

for a.e. $x, y \in [0, 1]$

Rutgers University

Proof. Since $V \subset U$, \overline{V} and ∂V are compact in U. For $\forall x \in \partial V$, there exists $r_x > 0$, such that $B(x, r_x) \subset U$. By compactness of ∂V , there exists finitely many $\{B(x_i, r_{x_i}/2)\}_{1 \leq i \leq n}$, such that $\bigcup_{i=1}^n B(x_i, r_{x_i}/2) \supset \partial V$. Now define W to be

$$W = V \cup \left(\bigcup_{i=1}^{n} B(x_i, r_{x_i}/2)\right)$$

Then $V \subset \subset W \subset \subset U$. We choose r to be

$$r = \min\{\operatorname{dist}(\overline{V, W^c}), \operatorname{dist}(\overline{W}, U^c)\}/2$$

Let $\rho \in C_c^{\infty}(B(0,r))$ with $\int \rho = 1$, define $\zeta \coloneqq \rho * \chi_W$. We show ζ satisfies. ζ is smooth since $\rho \in C_c^{\infty}$. For $x \in V$, $B(x,r) \subset W$, we have

$$\zeta(x) = \int_{B(x,r)} \chi_W(y) \rho(x-y) \, dy = 1$$

For dist $(x, \partial U) < r/2$, $B(x, r) \bigcap \overline{W} = \emptyset$

$$\zeta(x) = \int_{B(x,r)} \chi_W(y) \rho(x-y) \, dy = 0$$

		L
	-	

6.[Ex.6] Assume U is bounded and $U \subset \bigcup_{i=1}^{N} V_i$. Show there exists C^{∞} functions ζ_i (i = 1, ..., N) such that

$$\begin{cases} 0 \le \zeta_i \le 1, \text{ supp } \zeta_i \subset V_i \quad (i = 1, \dots, N) \\ \sum_{i=1}^N \zeta_i = 1 \quad \text{ on } U \end{cases}$$

The functions $\{\zeta_i\}_{i=1}^N$ form a partition of unity.

Proof. Firstly, we prove that there exists $\{W_i\}_{1 \le i \le N}$ such that $W_i \subset V_i, U \subset U_i$, $\bigcup_{i=1}^N W_i$. For $1 \le i \le N$. Define $\{W_{i,n}\}_{n \in \mathbb{N}}$ as

$$W_{i,n} \coloneqq \{ x \in V_i \mid \operatorname{dist}(x, \partial V_i) > \frac{1}{n} \}$$

Thus $V_i = \bigcup_{n \in \mathbb{N}} W_{i,n}$ and $\overline{U} \subset \bigcup_{1 \leq i \leq N} V_i = \bigcup_{\substack{1 \leq i \leq N \\ n \in \mathbb{N}}} W_{i,n}$. By compactness of \overline{U} , we could find finitely many W_{j,n_j} such that

$$\overline{U} \subset \bigcup_{j \ finite} W_{j,n_j}$$

Notice $W_{i,n} \subset W_{i,m}$ for n < m for every *i*. By adding some W_{j,n_j} if necessary, we could deduce that

$$\overline{U} \subset \bigcup_{1 \le i \le n} W_{i,n_i}$$

for some $n_i \in \mathbb{N}$. And $W_{i,n_i} \subset V_i$.

Secondly, by conclusions from Ex.1, we could find $\tilde{\zeta}_i \in C_c^{\infty}(V_i)$ such that $\tilde{\zeta}_i \equiv 1$ in W_i , $\tilde{\zeta}_i \geq 0$. Notice also $\bigcup_{i=1}^N W_i \subset \bigcup_{i=1}^N (\operatorname{supp} \tilde{\zeta}_i)^\circ$. There exists $\eta \in C_c^{\infty} (\bigcup_{i=1}^N (\operatorname{supp} \zeta_i)^\circ)$ such that $\eta \equiv 1$ in $\bigcup_{i=1}^N W_i$. And $0 \leq \eta \leq 1$. Then Let

$$\zeta_i = \eta \cdot \frac{\tilde{\zeta}_i}{\sum_{i=1}^N \tilde{\zeta}_i}$$

We could see ζ_i is well-defined and is smooth with support in V_i . And $\sum \zeta_i = 1$ on $\bigcup_{i=1}^N W_i$. Thus, $\{\zeta_i\}_{i=1}^N$ forms partition of unity in \overline{U} .

7.[Ex.7] Assume that U is bounded and there exists a smooth vector field α such that $\alpha \cdot \nu \geq 1$ along ∂U , where ν as usual denotes the outward unit normal. Assume $1 \leq p < \infty$.

Apply the Gauss-Green Theorem to $\int_{\partial U} |u|^p \alpha \cdot \nu \, dS$, to derive a new proof of the trace inequality

$$\int_{\partial U} |u|^p \, dS \le C \int_U |Du|^p + |u|^p \, dx \tag{7.1}$$

for all $u \in C^1(\overline{U})$.

Proof. Since $\alpha \cdot \nu \geq 1$, we have

$$\begin{split} \int_{\partial U} |u|^p \, dS &\leq \int_{\partial U} |u|^p \alpha \cdot \nu \, dS = \int_U \operatorname{div}(|u|^p \alpha) \, dx \\ &= \int_U p \, sgn(u) \, |u|^{p-1} Du \cdot \alpha + |u|^p \operatorname{div}(\alpha) \, dx \\ &\leq (p \cdot \sup |\alpha| + \sup |\operatorname{div}(\alpha)|) \int_U |Du|^p + |u|^p \end{split}$$

where we apply Holder's inequality to the last inequality. Let $C = p \cdot \sup |\alpha| + \sup |\operatorname{div}(\alpha)|$, we got (7.1)

8.[Ex.8] Let U be bounded, with a C^1 boundary. Show that a "typical" function $u \in L^p(U)$ $(1 \le p < \infty)$ does not have a trace on ∂U . More precisely, prove there does not exist a bounded linear operator

$$T: L^p(U) \to L^p(\partial U)$$

such that $Tu = u|_{\partial U}$ whenever $u \in C(\overline{U}) \cap L^p(U)$.

Proof. We give out a counterexample. i.e. a sequence of $u_n \in C(\overline{U}) \cap L^p(U)$ such that $u_n \to u$ in $L^p(U)$ but $u_n|_{\partial U}$ does not converge to $u|_{\partial U}$ in $L^p(\partial U)$. This contradicts to continuity of T if such a T exists.

Let u_n be defined as:

$$u_n(x) \coloneqq \begin{cases} 0, & \operatorname{dist}(x, \partial U) \ge \frac{1}{n} \\ 1 - n \cdot \operatorname{dist}(x, \partial U), & \operatorname{dist}(x, \partial U) < \frac{1}{n} \end{cases}$$
(8.1)

Then $||u||_{L^p(U)} \leq m\{x \mid \operatorname{dist}(x, \partial U) < 1/n\} \to 0$, where *m* denotes Lebesgue measure. $0 \in L^p(U) \cap C(\overline{U})$. However, $u_n|_{\partial U} \equiv 1$ does not converge to 0. \Box

9.[Ex.9] Integrate by parts to prove the interpolation inequality:

$$||Du||_{L^2} \le C \cdot ||u||_{L^2}^{1/2} ||D^2u||_{L^2}^{1/2}$$

for all $u \in C_c^{\infty}(U)$. Assume U is bounded, ∂U is smooth, and prove this inequality if $u \in H^2(U) \cap H_0^1(U)$.

(Hint: Take sequences $\{v_k\}_{k=1}^{\infty} \subset C_c^{\infty}(U)$ converging to u in $H_0^1(U)$ and $\{w_k\}_{k=1}^{\infty} \subset C^{\infty}(\overline{U})$ converging to u in $H^2(U)$.)

Proof. For $u \in C_c^{\infty}(U)$, by Holder's Inequality:

$$\int_{U} |Du|^2 \, dx = \int_{U} \nabla u \cdot \nabla u = -\int_{U} \Delta u \cdot u \le C \cdot \|D^2 u\|_{L^2} \|u\|_{L^2}$$

Now for $u \in H_0^1 \cap H^2$, take sequences $v_k \in C_c^{\infty}(U)$ converging to u in H_0^1 norm, take sequences $w_k \in C^{\infty}(\overline{U})$ converging to u in H^2 norm. Then

$$||v_k||_{H^1} \to ||u||_{H^1}, ||w_k||_{H^2} \to ||u||_{H^2}$$

We claim that $Dv_k \cdot Dw_k \to |Du|^2$ in L^1 norm.

$$\int_U |Du|^2 - \int_U Dv_k \cdot Dw_k \le \int_U |Du - Dv_k| \cdot |Dw_k| + \int_U |Du| |Du - Dw_k| \to 0$$

Page 6 of 14

By the same discussion, we have $v_k \cdot \Delta w_k \to u \cdot \Delta u$

$$\int_{U} |Du|^{2} = \lim_{k \to \infty} \int_{U} Dv_{k} \cdot Dw_{k}$$
$$= \lim_{k \to \infty} \int_{\partial U} v_{k} Dw_{k} \cdot n \, ds - \int_{U} v_{k} \Delta w_{k}$$
$$= -\int_{U} u \cdot \Delta u \leq C ||u||_{L^{2}} ||D^{2}u||_{L^{2}}$$

10.[Ex.10]

(a) Integrate by parts to prove

$$|Du||_{L^p} \le C \cdot ||u||_{L^p}^{1/2} ||D^2u||_{L^p}^{1/2}$$

for $2 \leq p < \infty$ and all $u \in C_c^{\infty}(U)$. (Hint: $\int_U |Du|^p dx = \sum_{i=1}^n \int_U u_{x_i} u_{x_i} |Du|^{p-2} dx$.)

(b) Prove

$$||Du||_{L^{2p}} \le C \cdot ||u||_{L^{\infty}}^{1/2} ||D^{2}u||_{L^{p}}^{1/2}$$

for $1 \leq p < \infty$ and all $u \in C_c^{\infty}(U)$

Proof. (a) By integrate by parts and Holder's inequality:

$$\begin{aligned} \|Du\|_{L^{p}}^{p} &= \int_{U} \sum_{i=1}^{n} u_{x_{i}} u_{x_{i}} |Du|^{p-2} dx \\ &= \int_{\partial U} u \cdot |Du|^{p-2} \frac{\partial u}{\partial n} ds - \int_{U} u \nabla \cdot (|Du|^{p-2} Du) dx \\ &\leq C \cdot \int_{U} |u| |Du|^{p-2} |D^{2}u| dx \\ &\leq_{(Holder)} C \cdot \|u\|_{L^{p}} \cdot \|Du\|_{L^{p}}^{p-2} \cdot \|D^{2}u\|_{L^{p}} \end{aligned}$$

Thus $||Du||_{L^p}^2 \le C \cdot ||u||_{L^p} \cdot ||D^2||_{L^p}$ for $2 \le p < \infty$

(b) Similarly, by integrates by parts and Holder's Inequality, we have

$$\begin{split} \|Du\|_{L^{2p}}^{2p} &= \int_{U} |Du|^{2p} \, dx = \int_{U} \sum_{i} u_{x_{i}} u_{x_{i}} |Du|^{2p-2} \, dx \\ &= \int_{\partial U} u \, \sum_{i} u_{x_{i}} |Du|^{2p-2} \, ds - \int_{U} u \cdot \nabla \cdot (|Du|^{2p-2} Du) \, dx \\ &\leq C \cdot \int_{U} |u| \cdot |Du|^{2p-2} \cdot |D^{2}u| \end{split}$$

Page 7 of 14

11. [Ex.11] Suppose U is connected and $u \in W^{1,p}(U)$ satisfies:

$$Du = 0$$
 a.e. in U

Prove u is a constant a.e. in U.

Proof. Take mollifiers η_{ϵ} with support in $B(0, \epsilon)$. $U_{\epsilon} = \{x \in U \mid \text{dist } (x, \partial U) > \epsilon\}$. We have $u * \eta_{\epsilon} \in C^{\infty}(U_{\epsilon})$. $D(u * \eta_{\epsilon}) = (Du) * \eta_{\epsilon} = 0$ a.e. Thus, $u * \eta_{\epsilon} = C(\epsilon)$ is a constant.

Then $u * \eta_{\epsilon} \to u$ a.e. in U. Since $u * \eta_{\epsilon}$ is a sequence of constants, they must converge to a constant. Let $C(\epsilon) \to C$ as $\epsilon \to 0$. Then u = C a.e.

12.[Ex.12] Show by example that if we have $||D^h u||_{L^1(V)} \leq C$ for all $0 < |h| < \frac{1}{2} \operatorname{dist}(V, \partial U)$, it does not necessarily follow that $u \in W^{1,1}(V)$.

Proof. Let $U = (-2, 2) \subset \mathbb{R}$, V = (-1, 1). Define u as

$$u = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases} \implies D^h(u) = \begin{cases} 1/h & x \in (0,h) \\ 0 & x \notin (0,h) \end{cases}$$

Thus $||D^h||_{L^1(V)} = 1$ for $|h| < \frac{1}{2} \text{dist}(V, \partial U)$. But $u \notin W^{1,1}(V)$.

13.[Ex.13] Give an example of an open set $U \subset \mathbb{R}^n$ and a function $u \in W^{1,\infty}(U)$, such taht u is not Lipschitz continuous in U. (Hint: Take U to be the open unit disk in \mathbb{R}^2 , with a slit removed).

Proof. Consider n = 2, let $U = B_1(0) \setminus (\{x \le 0, y = 0\} \bigcup B_{1/2}(0))$ be an annulus with a slit removed. Let u be defined by polar coordinates:

$$u(r,\theta) = r \cdot \theta, \qquad \theta \in (0,2\pi)$$

The Jacobian Matrix between (x, y) and (r, θ) is

$$J = \frac{\partial(x, y)}{\partial(r, \theta)} = r \in (\frac{1}{2}, 1)$$

Then obviously $u \in L^1(U)$ with derivatives $\partial_r u(r,\theta) = \theta$, $\partial_\theta u(r,\theta) = r$, then $(\partial_x u, \partial_y u) = J^{-1}(\partial_r u, \partial_\theta u)$ bounded. But for $(r_1, \theta_1) = (\frac{3}{4}, 2\pi - \varepsilon), (r_2, \theta_2) = (\frac{3}{4}, \varepsilon),$ we have

$$\frac{|u(r_1,\theta_1) - u(r_2,\theta_2)|}{\|(r_1,\theta_1) - (r_2,\theta_2)\|} \to \infty \qquad \varepsilon \to 0$$

Thus, u is not Lipschitz continuous in U.

14.[Ex.14] Verify that if n > 1, the unbounded function $u = \log \log(1 + \frac{1}{|x|})$ belongs to $W^{1,n}(U)$, for $U = B^0(0, 1)$.

Proof. Firstly, $u \in L^n$:

$$\int_{U} |u|^{n} dx = \alpha(n) \int_{0}^{1} |\log \log(1 + \frac{1}{r})|^{n} \cdot r^{n-1} dr < \infty$$

Where $\alpha(n)$ denotes the volume of $B_1(0) \subset \mathbb{R}^n$. Secondly, $\partial u \in L^n$, take $\partial_{x_1} u$ for example:

$$\int_{U} |\partial_{x_{1}}u|^{n} dx = \int_{U} \left|\frac{1}{\log(1+\frac{1}{r}) \cdot (1+\frac{1}{r})} \cdot (-\frac{x_{1}}{r^{3}})\right|^{n} dx$$
$$\leq \alpha(n) \int_{0}^{1} \left|\frac{1}{(r^{2}+r) \cdot \log(1+\frac{1}{r})}\right|^{n} \cdot r^{n-1} dr$$
$$\leq C \int_{0}^{\frac{1}{2}} \frac{1}{r \cdot |\log(\frac{1}{r})|^{n}} dr < \infty$$

Thus $u \in W^{1,n}(U)$

15.[Ex.15] Fix $\alpha > 0$ and let $U = B^0(0, 1)$. Show there exists a constant C, depending only on n and α , such that

$$\int_{U} u^2 dx \le C \int_{U} |Du|^2 dx \tag{15.1}$$

Provided

 $|\{x \in U \mid u(x) = 0\}| \ge \alpha , \quad u \in H^1(U).$ (15.2)

Proof. We prove by contradiction, assume there exists a sequence of $u_k \in W^{1,p}(U)$, satisfies (15.2), and has the property of

$$\int_U u_k^2 \, dx > k \int_U |Du_k|^2$$

Then define

$$v_k \coloneqq \frac{u_k}{\|u_k\|_2}$$
, then $\|v_k\|_2 = 1$, $\|Dv_k\|_2 < \frac{1}{k}$

Page 9 of 14

Since v_k are bounded in $H^1(U)$, there exists a subsequence of v_{k_j} and $v \in H^1$ such that

$$v_{k_i} \to v \text{ in } L^2, \quad v_k \rightharpoonup v \text{ in } W^{1,2}$$

Then for $\forall i = 1, \dots, n. \ \varphi \in C_c^{\infty}(U)$,

$$\left|\int_{U} v \cdot \partial_{i} \varphi\right| = \left|\lim_{j \to \infty} \int_{U} -\partial_{i} v_{k_{j}} \cdot \varphi\right| \le \|\varphi\|_{2} \cdot \|Dv_{k_{j}}\|_{2} \to 0$$

Thus $Dv \equiv 0$ a.e. Thus, v is a constant function, and $||v||_2 = \lim_{k \to \infty} ||v_k||_2 = 1$, thus $v \equiv C_0 \neq 0$ a.e. But

$$\int_{U} |v - v_{k_j}|^2 \ge C_0^2 |\{x \in U \mid v_{k_j} = 0\}| \ge C_0^2 \alpha > 0$$

That's contradiction to $v_{k_i} \to v$ in $L^2(U)$.

16. [Ex.16] (Variant of Hardy's inequality) Show that for each $n \ge 3$ there exists a constant C so that

$$\int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx \le C \int_{\mathbb{R}^k} |Du|^2 dx \tag{16.1}$$

for all $u \in H^1(\mathbb{R}^n)$. (Hint: $|Du + \lambda \frac{x}{|x|^2}u|^2| \ge 0$ for each $\lambda \in \mathbb{R}$.

Proof. Apply Hardy's inequality [See page 296]: if $v \in H^1(B(r))$, then we have

$$\int_{B(r)} \frac{v^2}{|x|^2} dx \le C \int_{B(r)} |Dv|^2 + \frac{v^2}{r^2} dx$$
(16.2)

Now Let u_n be defined on B(n) by $u_n = u|_{B(n)}$, then we have

$$\int_{B(n)} \frac{u^2}{|x|^2} \, dx \le C \int_{B(r)} |Du|^2 + \frac{u^2}{r^2} \, dx \le C \int_{\mathbb{R}^n} |Du|^2 \, dx + \frac{\|u\|_2}{n^2}$$

Let $n \to \infty$, we got the Hardy's Inequality

$$\int_{\mathbb{R}^n} \frac{u^2}{|x|^2} \, dx \le C \int_{\mathbb{R}^n} |Du|^2 \, dx$$

17.[Ex.17] (Chain rule) Assume $F : \mathbb{R} \to \mathbb{R}$ is C^1 , with F' bounded. Suppose U is bounded and $u \in W^{1,p}(U)$ for some $1 \le p \le \infty$. Show

$$v \coloneqq F(u) \in W^{1,p}(U)$$
 and $v_{x_i} = F'(u)u_{x_i}$ $(i = 1, \dots, n).$ (17.1)

Proof. By density of $W^{1,p}(U)$, choose $u_n \in C^{\infty}(\overline{U})$ such that $u_n \to u$ in $W^{1,p}(U)$. Now let $v_n \coloneqq F(u_n)$, then $\partial_i v_n = F'(u_n) \cdot \partial_i u_n$. Notice F is C^1 with F' bounded, thus $F(u_n) - F(u) \leq ||F'||_{\infty} \cdot |u_n - u|$. Hence,

$$\|v_n - v\|_p \le \|F'\|_{\infty} \cdot \|u_n - u\|_p \to 0.$$

$$Dv_n \to F'(u)Du \text{ a.e.} \quad \|Dv_n\|_p \le \|F'\|_{\infty} \cdot \|Du_n\|$$

Since Du_n converges to Du in L^p norm, thus Du_n are bounded in L^p norm. By Dominated Convergence Theorem, we have $Dv_n \to F'(u)Du$ in $L^p(U)$. Thus $v_n \to v$ in $W^{1,p}(U)$, with Dv = F'(u)Du.

18. [Ex.18] Assume $1 \le p \le \infty$ and U is bounded.

- (a) Prove that if $u \in W^{1,p}(U)$, then $|u| \in W^{1,p}(U)$
- (b) Prove $u \in W^{1,p}(U)$ implies $u^+, u^- \in W^{1,p}(U)$, and

$$Du^{+} = \begin{cases} Du & \text{a.e. on } \{u > 0\} \\ 0 & \text{a.e. on } \{u \le 0\} \end{cases}$$
(18.1)

$$Du^{-} = \begin{cases} 0 & \text{a.e. on } \{u \ge 0\} \\ -Du & \text{a.e. on } \{u < 0\} \end{cases}$$
(18.2)

(Hint: $u^+ = \lim_{\varepsilon \to 0} F_{\varepsilon}(u)$ for

$$F_{\varepsilon}(z) \coloneqq \begin{cases} (z^2 + \varepsilon^2)^{1/2} - \varepsilon & \text{if } z \ge 0\\ 0 & \text{if } z < 0 \end{cases}$$
(18.3)

(c) Prove that if $u \in W^{1,p}(U)$, then

$$Du = 0$$
 a.e. on the set $\{u = 0\}$.

Proof. For (a) and (b):

Consider F_{ε} defined as (18.3). Then $u^+ = \lim_{\varepsilon \to 0} F_{\varepsilon}(u)$. Notice $|u| = 2u^+ - u$, to prove $|u| \in W^{1,p}$, we just need to prove $u^+ \in W^{1,p}$. Firstly we observe

$$F_{\varepsilon}'(z) = \begin{cases} \frac{z}{(z^2 + \varepsilon^2)^{1/2}} & \text{if } z \ge 0\\ 0 & \text{if } z < 0 \end{cases}, \qquad |F_{\varepsilon}'| \le 1, \quad F_{\varepsilon}(z) \xrightarrow{\varepsilon \to 0} \mathbf{1}_{z \ge 0} \end{cases}$$

Thus by conclusion from last problem, we have $F_{\varepsilon}(u) \in W^{1,p}$ with $\partial_i(F_{\varepsilon}(u)) = F'_{\varepsilon}(u)\partial_i u \to \mathbf{1}_{u>0}\partial_i u$ as $\varepsilon \to 0$.

Page 11 of 14

Since $|F_{\varepsilon}'|$ is uniformly bounded by dominated convergence theorem, we have

$$\partial_i(F_{\varepsilon}(u)) \to \mathbf{1}_{u>0} \partial_i u \quad \text{in } L^p(U)$$

 $F_{\varepsilon}(u) \leq |u|$ is bounded, by DCT again we have $u^+ = \lim_{\varepsilon \to 0} F_{\varepsilon}(u)$ in $L^p(U)$. Thus, $F_{\varepsilon}(u) \to u^+$ in $W^{1,p}$ with $Du^+ = \mathbf{1}_{u>0}Du$. Du^- is given similarly. For (c):

Notice $u = u^+ - u^-$ with $u^+, u^- \in W^{1,p}$. $Du^+ = Du^- = 0$ a.e. on the set $\{u = 0\}$. Thus $Du = Du^+ - Du^- = 0$ a.e. on the set $\{u = 0\}$

19. [Ex.19] Provide details for the following alternative proof that if $u \in H^1(U)$, then

$$Du = 0$$
 a.e. on the set $\{u = 0\}$.

Let ϕ be a smooth, bounded, and nondecreasing function, such that ϕ' is bounded and $\phi(z) = z$ if $|z| \leq 1$. Set

$$u^{\varepsilon} \coloneqq \varepsilon \phi(u/\varepsilon). \tag{19.1}$$

Show that $u^{\varepsilon} \rightarrow 0$ weakly in $H^1(U)$ and therefore

$$\int_{U} Du^{\varepsilon} \cdot Du \ dx = \int_{U} \phi'(u/\varepsilon) |Du|^2 \ dx \to 0$$

Employ this observation to finish the proof.

Proof. u^{ε} is defined as (19.1), then $u^{\varepsilon} \leq \varepsilon \cdot \|\phi\|_{\infty} \to 0$. Thus, $u^{\varepsilon} \to 0$ in $L^{2}(U)$. And $\phi(0) = 0$, ϕ is non-decreasing shows $\phi' \geq 0$. u^{ε} satisfies

$$\{u^{\epsilon}=0\}=\{u=0\}, \quad D(u^{\varepsilon})=\phi'(u/\varepsilon) Du$$

Since ϕ' is bounded, $||Du^{\epsilon}||_2 \leq ||\phi'||_{\infty} \cdot ||Du||_2$ are bounded. Thus there exists a sequence of ε_n , such that $u^{\varepsilon_n} \to v$ weakly in $H^1(U)$ and $u^{\epsilon_n} \to v$ in $L^2(U)$ for some $v \in H^1(U)$. Notice that $u^{\varepsilon} \to 0$ in $L^2(U)$, thus v = 0 in U. Therefore,

$$0 = \lim_{n \to \infty} \int_U Du^{\epsilon_n} \cdot Du = \lim_{n \to \infty} \int_U \phi'(u/\varepsilon_n) |Du|^2 \ge \int_{\{u=0\}} |Du|^2 \ge 0$$

Thus |Du| = 0 a.e. in $\{u = 0\}$

$$\|u\|_{L^{\infty}} \le C \|u\|_{H^s} \tag{20.1}$$

for a constant C depending only on s and n.

Proof. $u \in H^s(\mathbb{R}^n)$, we have

$$||u||_{H^s}^2 = \int_{\mathbb{R}^n} (1+|y|^s)^2 |\hat{u}(y)|^2 \, dy < \infty$$
(20.2)

Then

$$\begin{aligned} |u(x)| &= \frac{1}{(2\pi)^{\frac{n}{2}}} |\int_{\mathbb{R}^n} e^{ixy} \hat{u}(y) dy| \\ &\leq \frac{1}{(2\pi)^{n/2}} \Big(\int_{\mathbb{R}^n} \frac{1}{(1+|y|^s)^2} \, dy \Big)^{\frac{1}{2}} \Big(\int_{\mathbb{R}^n} (1+|y|^s)^2 |\hat{u}(y)|^2 dy \Big)^{\frac{1}{2}} \\ &\leq \frac{\|u\|_{H^s}}{(2\pi)^{n/2}} \Big(|B_1| + \int_{|y|>1} \frac{1}{(1+|y|^{s/2})^2} \, dy \Big) = C \|u\|_{H^s} \end{aligned}$$

where B_1 is the unit ball of \mathbb{R}^n , $C < \infty$ Since

$$\int_{|y|>1} \frac{1}{(1+|y|^s)^2} \, dy \le \int_{|y|>1} \frac{1}{|y|^{2s}} \, dy = |\partial B_1| \int_{r>1} \frac{1}{r^{2s-n+1}} \, dr = \frac{|\partial B_1|}{2s-n} < \infty$$
(20.3)

for every $x \in \mathbb{R}^n$. Thus $u \in L^\infty$ with $||u||_{L^\infty} \leq C ||u||_{H^s}$, where C is bounded by

$$C \le \frac{1}{(2\pi)^{n/2}} (|B_1| + \frac{|\partial B_1|}{2s - n})$$
(20.4)

depending only on s and n.

21.[Ex.21] Show that if $u, v \in H^s(\mathbb{R}^n)$ for s > n/2, then $uv \in H^s(\mathbb{R}^n)$ and

$$\|uv\|_{H^s} \le C \|u\|_{H^s} \|v\|_{H^s} \tag{21.1}$$

the constant C depending only on s and n.

Proof. Notice $\widehat{uv} = \frac{1}{(2\pi)^{n/2}} \hat{u} * \hat{v}$, and there exists C depending only on n and s such that

$$(1+|y|^{s}) \le C \cdot [(1+|y-z|^{s}) + (1+|z|^{s})] \quad \text{for } \forall z \in \mathbb{R}^{n}$$
(21.2)

Hence, we have

$$\begin{split} \|uv\|_{H^s}^2 &= \int (1+|y|^s)^2 |\widehat{uv}(y)|^2 \, dy = \frac{1}{(2\pi)^n} \int (1+|y|^s)^2 |\widehat{u} * \widehat{v}(y)|^2 \, dy \\ &= \frac{1}{(2\pi)^n} \int (1+|y|^s)^2 \Big| \int \widehat{u}(y-z) \widehat{v}(z) \, dz \Big|^2 \, dy \\ &= \frac{1}{(2\pi)^n} \int \Big| \int (1+|y|^s) \widehat{u}(y-z) \widehat{v}(z) \, dz \Big|^2 \, dy \\ &\leq C \int \Big| \int (1+|y-z|^s) \widehat{u}(y-z) \widehat{v}(z) + (1+|z|^s) \widehat{u}(y-z) \widehat{v}(z) \, dz \Big|^2 \, dy \\ &= C \int (|f\widehat{u}| * \widehat{v} + \widehat{u} * |f\widehat{v}|)^2 \, dx \quad \text{, where } f(y) = (1+|y|^s) \\ &\leq_{(Young)} C \cdot (\|u\|_{H^s}^2 \|\widehat{v}\|_{L^1}^2 + \|v\|_{H^s}^2 \|\widehat{u}\|_{L^1}^2) \end{split}$$

Notice that

$$\|\hat{u}\|_{L^{1}}^{2} = \left(\int |\hat{u}(x)| \ dx\right)^{2} \le \left(\int \frac{1}{(1+|x|^{s})^{2}} \ dx\right) \left(\int (1+|x|^{s})^{2} |\hat{u}^{2}| \ dx\right) \le C \|u\|_{H^{s}}$$
(21.3)

Thus, we conclude that

$$||uv||_{H^s} \le C ||u||_{H^s} ||v||_{H^s}$$