PDE homework Qi Ma Rutgers University

5 Sobolev Spaces

1.[Ex.1] Suppose k € {0,1,...}, 0 <y < 1. Prove C*7(U) is a Banach space

Proof. Suppose {u, }nen is a Cauthy sequence in C*7(U). For Ve > 0, there exists
N € N, when n,m > N we have

|0%Un — O%Up || oo < |ty — Upp||crr < € (1.1)

for Va with |o| < k. Thus 0%u,, forms a Cauthy Sequence in L*. There exists a
function g, such that
10%un — gallzee — 0

Especially assume u,, converges to u in L*°. Since 0%u, are continuous and uni-
formly converges to g¢,, thus g, is continuous. We claim that v € C** with
0%u = g,. It suffices to prove 0yu = g;, others follow by induction on «.

Without loss of generality, assume x = (x1,2') € B,(0) C U. Notice u,(z1,2") =
un(0,2") + f Ot (s, x') ds. We have

n—oo

u(x) —/ g1(s,2')ds = lim U ( / Oy (s, o ds)
0
= lim un(O,x) = u(0,2") (1.2)

n—oo

Thus 0,u(x) = g1, by induction we could see u € C*(U). Now we show 0%u € C7
for |a| = k. We know that

[801“”]7 < ”un“C’” <M
< M|z —y[]”

- |8°‘un( ) aaun<y)
) lim |0%Up (x) — 0%y (y)]|

|
— [0%u() - O uly)| =
< Mz -yl for Va # y

Hence, u € C**(U), with ||u, — u||cx~ — 0. That implies C*7(U) is a Banach
Space O

2.[Ex.2] Assume 0 < < v < 1. Prove the interpolation inequality

1—v

m

lullgor@y < llull gols o) HUHC ) (2.1)
Proof. Notice that
_al=7 1-F
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Recall that we define ||u||co~ as

lullgors = e + sup 24E =@
oty T =yl
S u(z) — u(y)| 7
=l o sup IS
N e
1=y =0 - 1—y B o
< Bl (s PR (s M)
2y T =yl oty lle =yl
_ 1 _ -8
< (Il + sup M) T (el -+ sup M) =
wty 1T =yl v |z — vl
;%g =8
- HUHC’U#* ||u||co L(U)

3.[Ex.3] Denote by U the open square {x € R? | |z;| < 1, |z3| < 1}. Define

(]_—Il ifZE1>0, |fl§2|<l’1

1+ z; if 1 < 0, |I’2| < —I

1— 2, if$2>0, ‘$1|<$2

\1+I2 ifI2<0, |$1|<—I2

For which 1 < p < oo does u belongs to WhP(U)?

Proof. Obviously, u € LP(U) for every p € [1,+0o0] , we find the weak derivative

of u.
Take ¢ € C2°(U), then we have

/ ) - Oip(x
/ ([ a-lahopdn+ [ (= fol) o do) d
|x1|>|12| lz1|<[x2]

/ </ (—l|z1]) - Orp dxy + (—|$2|)/ op d:v1> dxsy
-1 |z1|>]22] |z1|<|w2]

1
— [ (el ellmaloa) + [ e ol plfasla) — [
—1 IE1>‘:B2‘ x1<*|22|
+ (=loal) - ((|2l, 22) = (=l 2)) ) s

1
:/ (/ @ dxq —/ © d.xl)dxg
-1 1> |z2| 1 <—|z2|

Z/U(l{x1>x2|} — g <—faopy) () do
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Hence, —01u = 13,520} — L{z,<—|a|} il Weak sense. By the same discussion for

Osu, we have

=01 = Lz s(anly — Yoy <o}
—Ohu = 1{x2>|:c1|} - 1{x2<—|901|}

Thus Vu € L? for every p € [1,+0c]. u € W'?(U) for every p € [1, 400 O

4.[Ex.4] Assume n =1 and w € WP(0,1) for some 1 < p < cc.

(a) Show that u is equal a.e. to an absolutely continuous function and u’ (which
exists a.e.) belongs to L”(0,1).

(b) Prove that if 1 < p < oo, then

ute) = ) < o~ ([ uar) (@)

for a.e. z,y € [0,1].

Proof.  (a) Let g be the weak derivative of u. Consider f(z) == [ g(t) dt. Since
g € LP(0,1), we have that f is absolutely continuous with f’ = g a.e. Now
for Vo € C2°(0,1), we have

1
/u-w’drcz—/g-soz/f-w’ (4.2)
0
which implies
1
/ (u—f)-¢'=0 = u=f+C ae. for some constant C (4.3)
0

Hence, u is absolutely continuous with v’ = g a.e.

(b) By conclusion from (a), we know u(z) = [ u/(t) dt + C. Then we have

ua) — u(y)] < / 1ol (1)) dt

1 1-1/p 1 o) P 1 1 o) P
< ([ nen) ([ we) " = ([ )
0 0 0

for a.e. z,y € [0,1]
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5.[Ex.5] Let U,V be open sets, with V' CC U. Show there exists a smooth function
¢ such that ( =1 on V, ( = 0 near OU. (Hint: Take V CC W CC U and mollify

Xw )
Proof. Since V.CC U, V and 0V are compact in U. For Vo € 0V, there exists

ry > 0, such that B(z,r,) C U. By compactness of OV, there exists finitely many
{B(xi,74,/2) }1<i<n, such that U, B(x;,r,,/2) D 0V. Now define W to be

W=Vu (U B(z;, rxi/Q))
i=1
Then V CcC W ccC U. We choose r to be
r = min{dist(V, W¢), dist(W, U%)}/2

Let p € C(B(0,r)) with [p =1, define ¢ = p * xw. We show ( satisfies. ( is
smooth since p € C®°. For x € V', B(xz,r) C W, we have

)= [ etz =) dy =1

For dist(z,0U) < r/2, B(x,r) W = &

]

6.[Ex.6] Assume U is bounded and U CC vazl V;. Show there exists C* functions
G (i=1,...,N) such that

N
Z Q =1 on U
i=1
The functions {¢;}X, form a partition of unity.

Proof. Firstly, we prove that there exists {W;}1<;<y such that W, cC V;, U CC
Uf\il W;. For 1 <i¢ < N. Define {W; , }nen as

1
Win ={zeV;| dist(z,0V;) > =}
n
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Thus V; = ey Wi and U C Ujcien Vi = Ur<i<ny Wi, By compactness of U,
- neN
we could find finitely many W, such that

Uvc |J Wi,

7 finite

Notice W;,, C W; ., for n < m for every i. By adding some Wj,, . if necessary, we
could deduce that

UcC U Win,

1<i<n

for some n; € N. And W;,,, CC V;.
Secondly, by conclusions from Ex.1, we could find {; € C>°(V;) such that ¢
1in W;, {; > 0. Notice also U, W; cc UX,(supp ¢)°. There exists €
C( U, (supp ¢;)°) such that n =1 in UN, W;. And 0 <5 < 1. Then Let

[

G
G=n- =N =
Zi:l Gi
We could see ¢; is well-defined and is smooth with support in V;. And > ¢ =1
on (U, Wi. Thus, {¢;}Y, forms partition of unity in U. O

7.[Ex.7] Assume that U is bounded and there exists a smooth vector field a such
that a-v > 1 along OU, where v as usual denotes the outward unit normal. Assume
1 <p<oo.

Apply the Gauss-Green Theorem to |, ou |UPa - v dS, to derive a new proof of the

trace inequality
/ |ulP dS < C/ | Dul? + |ul? dx (7.1)
U U

for all u € C*(U).

Proof. Since - v > 1, we have
/ [ulP dS < / |ulPac- v dS = / div(|ulPa) dx
oU oU U
= / p sgn(u) |ulP"'Du - a + |ulPdiv(a) dz
U
< (p-sup al + supdiv(@)) [ [DuP +[ap
U

where we apply Holder’s inequality to the last inequality. Let C' = p - sup|a| +
sup |div(a)], we got (7.1) 0
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8.[Ex.8] Let U be bounded, with a C' boundary. Show that a “typical” function
u € LP(U) (1 < p < o0) does not have a trace on OU. More precisely, prove there

does not exist a bounded linear operator
T:LP(U)— LP(OU)
such that Tu = u|sy whenever u € C(U) N LP(U).

Proof. We give out a counterexample. i.e. a sequence of u, € C(U) N LP(U)
such that u, — u in L?(U) but u,|ey does not converge to u|sy in LP(OU). This
contradicts to continuity of 7" if such a T exists.

Let u,, be defined as:

1

0, dist(z,0U) > —
up(x) = le (8.1)

1 —n-dist(z,0U), dist(z,0U) < —

n
Then ||u||rp@y < m{x | dist(z,0U) < 1/n} — 0, where m denotes Lebesgue
measure. 0 € LP(U) N C(U). However, u,|sy = 1 does not converge to 0. O

9.[Ex.9] Integrate by parts to prove the interpolation inequality:

|1Dullze < C - Jlull 21 D?ull 2
for all u € C°(U). Assume U is bounded, U is smooth, and prove this inequality
if u e H*(U)N Hy(U).

(Hint: Take sequences {vy}72, C C°(U) converging to u in H}(U) and {wy}32, C
C*>(U) converging to u in H*(U).)

Proof. For u € C(U), by Holder’s Inequality:

/|Du|2 da::/Vu-Vu:—/Au-ugC-||D2u||L2||u||L2
U U U

Now for u € H} N H?, take sequences v, € C°(U) converging to u in Hj norm,

take sequences wy, € C=(U) converging to u in H? norm. Then
okl = llulla,  wellaz = Jlullm
We claim that Duvy, - Dwy, — |Dul? in L' norm.
/ | Dul|? — / Duy, - Dwy, < / |Du — Duy| - | Dwy| +/ | Du||Du — Dwy| — 0
U U U U
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By the same discussion, we have vy, - Aw, — u - Au

/|Du|2: lim/ka-Dw;C
U k—oo Jir

= lim vy Dwy, - n ds — / v Awy,

= —/ u- Au < C|lul 2| D*ul| g2
U

10.[Ex.10]
(a) Integrate by parts to prove
|Dullze < C - Jlull’ | D*ul

for 2 < p < oo and all u € C*(U).
(Hint: fU |DulP dz =370 fU Ug; U,

(b) Prove

DulP=2 dx.)

1/2 1/2
|Dul| 20 < C - |Jul| 21| D?ull

for 1 <p < ooandall ue C*U)

Proof.  (a) By integrate by parts and Holder’s inequality:

n
|Dufl%, = / S i,
U i=1
ou

= / u - |DulP?— ds — / u V- (|DulP~2Du)dx
ou on U

DulP~? dx

< c-/ (| [Dul?~? | D] dz
U
<(ttotdery C - [l o - [ Dull72? - | D*ul| o
Thus || Dul|7, < C - ||ullte - | D?|| e for 2 < p < 00

(b) Similarly, by integrates by parts and Holder’s Inequality, we have

1Dul, = [ 1Du dz = [ 3w | Du da
U U
:/ u Zugci|Du|2p_2 ds — / u-V - (|Dul*"2Du) dx
ou U

<C- [ ful- a2 |2l
U
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< C - ulle - |1 Dull,” - 1Dl o

11.[Ex.11] Suppose U is connnected and u € WP(U) satisfies:
Du=0 ae inU

Prove u is a constant a.e. in U.

Proof. Take mollifiers n. with support in B(0,¢). U, = {x € U | dist (x,0U) > €}.
We have u xn. € C*°(U,). D(uxn.) = (Du) xn. =0 a.e. Thus, ux*xn. = C(e) is a
constant.

Then u *xn. — w a.e. in U. Since u * 7, is a sequence of constants, they must
converge to a constant. Let C(e) = C as € - 0. Then u = C a.e. O

12.[Ex.12] Show by example that if we have ||D"ul|f1,) < C for all 0 < || <
5dist(V, 0U), it does not necessarily follow that u € Wh(V).

Proof. Let U = (=2,2) CR, V = (—1,1). Define u as

u:{1 x>0 :>Dh(u):{1/h z € (0,h)
0 x<0 0 2¢(0,h)

Thus || D11y = 1 for |h| < 3dist(V,0U). But u ¢ WH(V). O

13.[Ex.13] Give an example of an open set U C R™ and a function u € W'°(U),
such taht u is not Lipschitz continuous in U. (Hint: Take U to be the open unit

disk in R?, with a slit removed).

Proof. Consider n = 2, let U = B1(0)\({z < 0,y = 0} J B1/2(0)) be an annulus

with a slit removed. Let u be defined by polar coordinates:
u(r,0) =r-0, g € (0,2m)

The Jacobian Matrix between (z,y) and (r,0) is
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Then obviously w € L'(U) with derivatives d,u(r,0) = 6, Opu(r,0) = r, then
(O, Oyu) = J~H(dyu, Dgu) bounded. But for (r1,61) = (3,21 —¢), (r2,62) = (2, 2),

we have
|u(7“1,01) - U(7”2792)| e — 0
[(r1,61) — (72, 65)]]
Thus, u is not Lipschitz continuous in U. O

14.[Ex.14] Verify taht if n > 1, the unbounded function u = loglog(1 + @ belongs
to Whn(U), for U = B°(0,1).

Proof. Firstly, u € L™ :

1
1

/ |u|™ dox = a(n)/ | log log(1 + —)|™ - rldr < oo
U 0 r

Where a(n) denotes the volume of B;(0) C R™.
Secondly, u € L™, take 0,,u for example:

g
Oyt dr = g
/|1u|ac/|log Ty CR
1 1
n_ n— d
/‘TQ—FT) log(1 + = )‘ '

2 1
SC/ ———— dr <o
o 7-|log(;)["

Thus u € WH(U) O

15.[Ex.15] Fix @ > 0 and let U = B°(0,1). Show there exists a constant C,

depending only on n and «, such that

/u2 dr < C'/ |Dul? dz (15.1)
U U

Provided
Hr €U |u(z) =0} >a, ueH(U). (15.2)

Proof. We prove by contradiction, assume there exists a sequence of u;, € WP (U),
satisfies (), and has the property of

/uz dx>/f/|Duk|2
U U

1
then ||vg|la =1, || Dvk|l2 < T

Then define
Uk

[ PY

Vg =
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Since vy, are bounded in H'(U), there exists a subsequence of vy, and v € H' such
that

v, — v in L?, v, —vin WH?

Then for Vi=1,...,n. ¢ € C>(U),

]/ v- 0y = | lim / —0Oivg; - o] < ll2 - [ Dok [l2 = 0
U J—=oo Jir

Thus Dv = 0 a.e. Thus, v is a constant function, and ||v]js = limg_e ||g]l2 = 1,
thus v = Cy # 0 a.e. But

/|v—vkj|2203 {z e U |v,; =0} > Cia>0
U

That’s contradiction to vy, — v in L*(U). O

16.[Ex.16] (Variant of Hardy’s inequality) Show that for each n > 3 there exists a

constant C so that )
/ e < C’/ | Dul?dz (16.1)
R ’LE‘ X

for all w € H'(R"). (Hint: |Du + Apmul*l > 0 for each A € R.

Proof. Apply Hardy’s inequality [See page 296]: if v € H'(B(r)), then we have

v? v?
B(r) | B(r) r

Now Let u,, be defined on B(n) by w, = u|p@) , then we have

2 2
/ “_2 dx < C/ |Dul? + u—2 dr < C [ |Duf* dx + Hu|2|2
B(n) || B(r) 4 R L
Let n — oo, we got the Hardy’s Inequality

w2
/ ——dr < C | |Dul]® do
R

n |x|2 R~

]

17.[Ex.17] (Chain rule) Assume F': R — R is C', with F” bounded. Suppose U
is bounded and u € W'P(U) for some 1 < p < oo. Show

vi=F(u) e WPU) and wv,, = F'(u)u,, (i=1,...,n). (17.1)
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Proof. By density of W'P(U), choose u,, € C*®(U) such that u, — u in W'P(U).
Now let v, == F(u,), then d;v,, = F’'(u,) - dju,. Notice F is C! with F’ bounded,
thus F(u,) — F(u) < [|[F'||oo * |tn — u|. Hence,

[on = vllp < [1F' oo« lun — ull, = 0.
Dv, — F'(u)Du a.e. ||Dv,ll, < |F'||lco * || D]

Since Du,, converges to Du in L” norm, thus Du, are bounded in LP norm. By
Dominated Convergence Theorem, we have Dv, — F'(u)Du in LP(U). Thus
v, — v in WHP(U), with Dv = F'(u) Du. O
18.[Ex.18] Assume 1 < p < 0o and U is bounded.

(a) Prove that if u € WP(U), then |u| € WHP(U)

(b) Prove u € WHP(U) implies u™,u~ € WP(U), and

Du a.e. on {u >0}
Dut = (18.1)
0 ae on{u<0}
0 a.e. on {u > 0}
Du~ = (18.2)
— Du a.e. on {u <0}

(Hint: u* = lim. o F.(u) for

(242 —¢ if2>0

F.(2) = {O c 0 (18.3)

(c) Prove that if u € W'?(U), then

Du =0 a.e. on the set {u = 0}.

Proof. For (a) and (b):
Consider F. defined as () Then ut = lim,._,¢ F.(u). Notice |u| = 2u™ — u, to
prove |u| € WP, we just need to prove ut € WP, Firstly we observe

z
F(2) = (22 + e2)1/2
0 if z<0

ifz>0
e—0

; [F <1, F.z2) = l.xo

Thus by conclusion from last problem, we have F.(u) € W with 0;(F.(u)) =
F!/(u)0;u — 1,500;u as € — 0.
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Since |F!| is uniformly bounded by dominated convergence theorem, we have
aZ(FE(U)) — 1u>062-u in LP(U)

F.(u) < |u| is bounded, by DCT again we have u* = lim._,o F.(u) in LP(U). Thus,
F.(u) = u™ in W with Dut = 1,-9Du. Du~ is given similarly.

For (c):
Notice u = u™ —u~ with u™,u~ € W', Du* = Du™ = 0 a.e. on the set {u = 0}.
Thus Du = Dut — Du~ =0 a.e. on the set {u =0} O

19.[Ex.19] Provide details for the following alternative proof that if u € H'(U),
then
Du =0 a.e. on the set {u = 0}.

Let ¢ be a smooth, bounded, and nondecreasing function, such that ¢’ is bounded
and ¢(z) = z if |z] < 1. Set
u® = ep(u/e). (19.1)

Show that u¢ — 0 weakly in H'(U) and therefore

/Du6~Du dx:/¢'(u/6)|Du|2 dr — 0
U U

Employ this observation to finish the proof.

Proof. u® is defined as (), then u® < € - ||¢]|oc — 0. Thus, u® — 0 in L*(U).
And ¢(0) = 0, ¢ is non-decreasing shows ¢’ > 0. u° satisfies

{u' =0} ={u=0}, D(u)=¢(u/c) Du

Since ¢ is bounded, |[Duf|la < ||¢']|o - [[Du||2 are bounded. Thus there exists a
sequence of &, such that u» — v weakly in H*(U) and u» — v in L*(U) for some
v € HY(U). Notice that u® — 0 in L*(U), thus v = 0 in U. Therefore,

0= lim [ Du*-Du= lim / ¢'(u/e,)| Dul* > / |Dul* >0

n—o0 U

Thus |Du| =0 a.e. in {u = 0} O
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20.[Ex.20] Use the Fourier transform to prove that if u € H*(R™) for s > n/2,
then u € L>(R"), with the bound

(20.1)
for a constant C' depending only on s and n.
Proof. uw € H*(R"), we have
Jalle = [+ oVl dy < oc (20.2)
Then
1
u(e ol [ et
27T 2 Rn
d )(/ Lyl 2lady)Pdy)
2W)n/z(/ﬂw e ) (s e Plac)Pay
1
Bil+ | o ) -
( i1 (1+ [y]¥/2)?
where Bj is the unit ball of R", C' < oo Since
1 |aBl|
ST - ~
/|y|>1 (L+ [yl*)? lyl>1 \yPS r2ntl T 95—
(20.3)

for every x € R" . Thus u € L™ with |Ju||p~ < C||u|

ms, where C' is bounded by

1 |8B1|

C < (2W)n/2(|31| to— ) (20.4)

depending only on s and n. ]

21.[Ex.21] Show that if u,v € H*(R") for s > n/2, then uv € H*(R") and
[wol[ers < Cllullas[|v]| s (21.1)

the constant C' depending only on s and n.

;n/za « 0, and there exists C' depending only on n and s such

Proof. Notice uv = o)

that
I+1y]) <C-[(1+|y—2°)+ (1 + |2|°)] forVzeR" (21.2)
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Hence, we have

[[uv]

o= [ W@ dy = o [ Pl o) dy
- g 0l

(1+ll)ity — )o(z) d| dy

<c [| fasiy- 2Pt - 2)i6) + 0+ Pty - 2itz) da| dy

= [(sil x o+ |fol? dowhere f(g) = (1+ [y

<voung) C - (Il 101170 + l[ollZ: [1l[71)

u(y — 2)v(2) dz i

dy

Notice that

Jalle = [ 1ot o < ([ o do) ( [+ 1ol do) <

Thus, we conclude that

(21.3)

ol < Cllullellolle
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